Evaluation of a geospatial liquefaction model using land damage data from the 2016 Kaikōura earthquake

Authors

  • Amelia Lin University of Auckland
  • Liam Wotherspoon University of Auckland
  • Jason Motha University of Canterbury

DOI:

https://doi.org/10.5459/bnzsee.55.4.199-213

Abstract

The paper uses two geospatial liquefaction models based on (1) global and (2) New Zealand specific variables such as Vs30, precipitation and water table depth to estimate liquefaction probability and spatial extent for the 2016 Kaikōura earthquake. Results are compared to observational data, indicating that the model based on global variables underestimates liquefaction manifestation in the Blenheim area due to the low resolution of the input datasets. Furthermore, a tendency for underprediction is evident in both models for sites located in areas with rapidly changing elevation (mountainous terrain), which is likely caused by the low resolution of the elevation-dependent variables Vs30 and water table depth leading to incorrect estimates. The New Zealand specific model appears to be less sensitive to this effect as the variables provide a higher resolution and a better representation of region specific characteristics. However, the results suggest that the modification might lead to an overestimation of liquefaction manifestation along rivers (e. g. Kaikōura). An adjustment of the model coefficients and / or the integration of other resources such as geotechnical methods can be considered to improve the model performance. The evaluation of the geospatial liquefaction models demonstrates the importance of high resolution input data and leads to the conclusion that the New Zealand specific model should be preferred over the original model due to better prediction performance. The findings provide an overall better understanding on the models’ applicability and potential as a tool to predict liquefaction manifestation for future hazard assessments.

Author Biographies

Liam Wotherspoon, University of Auckland

Associate Professor, Department of Civil and Environmental Engineering, University of Auckland

Jason Motha, University of Canterbury

Software Engineer, Civil and Natural Resources Engineering, University of Canterbury, Christchurch

References

Chen L, Yuan X, Cao Z, Hou L, Sun R, Dong L, Wang W, Meng F and Chen H (2009). “Liquefaction macrophenomena in the greatWenchuan earthquake”. Earthquake Engineering and Engineering Vibration, 8(2): 219–229. https://doi.org/10.1007/s11803-009-9033-4 DOI: https://doi.org/10.1007/s11803-009-9033-4

Boulanger R (2012). “Liquefaction in the 2011 Great East Japan earthquake: Lessons for U.S. practice”. International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake (2012, March 1–4), Tokyo, Japan. https://www.jaee.gr.jp/event/seminar2012/eqsympo/pdf/papers/187.pdf

Yasuda S, Harada K, Ishikawa K and Kanemaru Y (2012). “Characteristics of liquefaction in Tokyo Bay area by the 2011 Great East Japan Earthquake”. Soils and Foundations, 52(5): 793–810. https://doi.org/10.1016/j.sandf.2012.11.004 DOI: https://doi.org/10.1016/j.sandf.2012.11.004

Di Ludovico M, Chiaradonna A, Bilotta E, Flora A and Prota A (2020). “Empirical damage and liquefaction fragility curves from 2012 Emilia earthquake data”. Earthquake Spectra, 36(2): 507–536. https://doi.org/10.1177%2F8755293019891713 DOI: https://doi.org/10.1177/8755293019891713

Fontana D, Amoroso S, Minarelli L and Stefani M (2019). “Sand liquefaction induced by a blast test: New insights on source layer and grain-size segregation mechanisms (late quaternary, Emilia, Italy)”. Journal of Sedimentary Research, 89(1): 13–27. https://doi.org/doi.org/10.2110/jsr.2019.1 DOI: https://doi.org/10.2110/jsr.2019.1

Cubrinovski M, Robinson K, Taylor M, Hughes M and Orense R (2012). “Lateral spreading and its impacts in urban areas in the 2010–2011 Christchurch earthquakes”. New Zealand Journal of Geology and Geophysics, 55(3): 255–269. https://doi.org/10.1080/00288306.2012.699895 DOI: https://doi.org/10.1080/00288306.2012.699895

Orense RP, Kiyota T, Yamada S, Cubrinovski M, Hosono Y, Okamura M and Yasuda S (2011). “Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes”. Seismological Research Letters, 82(6): 905–918. https://doi.org/10.1785/gssrl.82.6.905 DOI: https://doi.org/10.1785/gssrl.82.6.905

Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF, Kayen RE and Moss RES (2004). “Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential”. Journal of Geotechnical and Geoenvironmental Engineering, 130(12): 1314–1340. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314) DOI: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314)

Idriss I and Boulanger R (2008). Soil Liquefaction during Earthquakes. Earthquake Engineering Research Institute (EERI), Oakland, CA.

Boulanger R and Idriss IM (2014). CPT and SPT based liquefaction triggering procedures. Report Report No. UCD/CGM.-14/01, Center for Geotechnical Modelling, Civil & Environmental Engineering, UC Davis, CA. http://www.ce.memphis.edu/7137/PDFs/Notes/i3Boulanger_Idriss_CPT_and_SPT_Liq_triggering_CGM-14-01_20141.pdf

Moss RE, Seed RB, Kayen RE, Stewart JP, Der Kiureghian A and Cetin KO (2006). “CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential”. Journal of Geotechnical and Geoenvironmental Engineering, 132(8): 1032–1051. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(1032) DOI: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(1032)

Robertson PK and Wride CE (1998). “Evaluating cyclic liquefaction potential using the cone penetration test”. Canadian Geotechnical Journal, 35(3): 442–459. https://doi.org/10.1139/t98-017 DOI: https://doi.org/10.1139/t98-017

Andrus RD and Stokoe II KH (2000). “Liquefaction resistance of soils from shear-wave velocity”. Journal of Geotechnical and Geoenvironmental Engineering, 126(11): 1015–1025. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015) DOI: https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015)

Kayen R, Moss RES, Thompson EM, Seed RB, Cetin KO, Der Kiureghian A, Tanaka Y and Tokimatsu K (2013). “Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential”. Journal of Geotechnical and Geoenvironmental Engineering, 139(3): 407–419. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000743 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000743

Bastin SH, van Ballegooy S, Mellsop N and Wotherspoon L (2020). “Liquefaction case histories from the 1987 Edgecumbe earthquake, New Zealand – Insights from an extensive CPT dataset and paleo-liquefaction trenching”. Engineering Geology, 271(2020): 105404. https://doi.org/10.1016/j.enggeo.2019.105404 DOI: https://doi.org/10.1016/j.enggeo.2019.105404

Holzer TL, Bennett MJ, Noce TE, Padovani AC and Tinsley Iii JC (2006). “Liquefaction hazard mapping with LPI in the Greater Oakland, California, area”. Earthquake Spectra, 22(3): 693–708. https://doi.org/10.1193/1.2218591 DOI: https://doi.org/10.1193/1.2218591

Lenz JA and Baise LG (2007). “Spatial variability of liquefaction potential in regional mapping using CPT and SPT data”. Soil Dynamics and Earthquake Engineering, 27(7): 690–702. https://doi.org/10.1016/j.soildyn.2006.11.005 DOI: https://doi.org/10.1016/j.soildyn.2006.11.005

Maurer BW, Green RA, Cubrinovski M and Bradley BA (2014). “Evaluation of the liquefaction potential index for assessing liquefaction hazard in Christchurch, New Zealand”. Journal of Geotechnical and Geoenvironmental Engineering, 140(7): (04014032)1–11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001117 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001117

Rashidian V and Gillins DT (2018). “Modification of the liquefaction potential index to consider the topography in Christchurch, New Zealand”. Engineering Geology, 232(2018): 68–81. https://doi.org/10.1016/j.enggeo.2017.11.010 DOI: https://doi.org/10.1016/j.enggeo.2017.11.010

Maurer BW (2018). Towards multi-tier modeling of liquefaction impacts on transportation infrastructure. Report Project #1132-NCTRBM, Pacific Earthquake Engineering Research Centre. https://peer.berkeley.edu/sites/default/files/peer-tsrpmaurer-web20180423.pdf

Zhu J, Baise LG and Thompson EM (2017). “An updated geospatial liquefaction model for global application”. Bulletin of the Seismological Society of America, 107(3): 1365–1385. https://doi.org/10.1785/0120160198 DOI: https://doi.org/10.1785/0120160198

Maurer B (2017). “Field-testing liquefaction models based on geospatial vs. geotechnical data”. 6th International Young Geotechnical Engineers’ Conference (iYGEC6) (2017, September 16-17), Seoul, Korea. https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/39748/iYGEC6_Full%20Paper_BWMaurer.pdf

Russell J and van Ballegooy S (2015). Canterbury Earthquake Sequence: Increased Liquefaction Vulnerability Assessment Methodology. Report Job No: 52010.140.v1.0, Tonkin & Taylor Ltd. https://d2h44nai6dnz3i.cloudfront.net/1002/2015_10_16_canterbury_earthquake_sequence_increased_liquefaction_vulnerability_assessment_methodology_tt_report_final.pdf

Geyin M, Baird AJ and Maurer BW (2020). “Field assessment of liquefaction prediction models based on geotechnical versus geospatial data, with lessons for each”. Earthquake Spectra, 36(3): 1386–1411. https://doi.org/10.1177%2F8755293019899951 DOI: https://doi.org/10.1177/8755293019899951

Rashidian V and Baise LG (2020). “Regional efficacy of a global geospatial liquefaction model”. Engineering Geology, 272(2020): 105644. https://doi.org/10.1016/j.enggeo.2020.105644 DOI: https://doi.org/10.1016/j.enggeo.2020.105644

Lin A,Wotherspoon L, Bradley B and Motha J (2021). “Evaluation and modification of geospatial liquefaction models using land damage observational data from the 2010–2011 Canterbury Earthquake Sequence”. Engineering Geology, 287: 106099. https://doi.org/10.1016/j.enggeo.2021.106099 DOI: https://doi.org/10.1016/j.enggeo.2021.106099

Zhu J, Daley D, Baise LG, Thompson EM, Wald DJ and Knudsen KL (2015). “A geospatial liquefaction model for rapid response and loss estimation”. Earthquake Spectra, 31(3): 1813–1837. https://doi.org/10.1193/121912eqs353m DOI: https://doi.org/10.1193/121912EQS353M

Massey CI, Townsend DT, Lukovic B, Morgenstern R, Jones K, Rosser B and de Vilder S (2020). “Landslides triggered by the Mw7.8 14 November 2016 Kaik¯oura earthquake: an update”. Landslides, 17(10): 2401–2408. https://doi.org/10.1007/s10346-020-01439-x DOI: https://doi.org/10.1007/s10346-020-01439-x

Davies AJ, Sadashiva V, Aghababaei M, Barnhill D, Costello SB, Fanslow B, Headifen D, Hughes MW, Kotze R and Mackie J (2017). “Transport infrastructure performance and management in the South Island of New Zealand, during the first 100 days following the 2016 Mw 7.8 Kaik¯oura earthquake”. Bulletin of the New Zealand Society for Earthquake Engineering, 50(2): 271–299. https://doi.org/10.5459/bnzsee.50.2.271-299 DOI: https://doi.org/10.5459/bnzsee.50.2.271-299

Dellow S, Massey C, Cox S, Archibald G, Begg J, Bruce Z, Carey J, Davidson J, Pasqua FD, Glassey P, Hill M, Jones K, Lyndsell B, Lukovic B, McColl S, Rattenbury M, Read S, Rosser B, Singeisen C, Townsend D, Villamor P, Villeneuve M, Godt J, Jibson R, Allstadt K, Rengers F, Wartman J, Rathje E, Sitar N, Adda AZ, Manousakis J and Little M (2017). “Landslides caused by the Mw7.8 Kaik¯oura earthquake and the immediate response”. Bulletin of the New Zealand Society for Earthquake Engineering, 50(2). https://doi.org/10.5459/bnzsee.50.2.106-116 DOI: https://doi.org/10.5459/bnzsee.50.2.106-116

Kaiser A, Balfour N, Fry B, Holden C, Litchfield N, Gerstenberger M, D’Anastasio E, Horspool N, McVerry G, Ristau J, Bannister S, Christophersen A, Clark K, Power W, Rhoades D, Massey C, Hamling I, Wallace L, Mountjoy J, Kaneko Y, Benites R, Van Houtte C, Dellow S, Wotherspoon L, Elwood K and Gledhill K (2017). “The 2016 Kaik¯oura, New Zealand, Earthquake: Preliminary Seismological Report”. Seismological Research Letters, 88(3): 727–739. https://doi.org/10.1785/0220170018 DOI: https://doi.org/10.1785/0220170018

Bastin SH, Stringer M, Green R, Wotherspoon L, van Ballegooy S, Cox BR and Osuchowski A (2018). “Geomorphological controls on the distribution of liquefaction in Blenheim, New Zealand, during the 2016 Mw7.8 Kaikoura Earthquake”. Geotechnical Earthquake Engineering and Soil Dynamics V, pp. 264–272. https://doi.org/10.1061/9780784481455.026 DOI: https://doi.org/10.1061/9780784481455.026

Stringer ME, Bastin S, McGann CR, Cappellaro C, Kortbawi ME, McMahon R, Wotherspoon LM, Green RA, Aricheta J, Davis R, McGlynn L, Hargraves S, Ballegooy SV, Cubrinovski M, Bradley BA, Bellagamba X, Foster K, Lai C, Ashfield D, Baki A, Zekkos A, Lee R and Ntritsos N (2017). “Geotechnical aspects of the 2016 Kaik¯oura earthquake on the South Island of New Zealand”. Bulletin of the New Zealand Society for Earthquake Engineering, 50(2). https://doi.org/10.5459/bnzsee.50.2.117-141 DOI: https://doi.org/10.5459/bnzsee.50.2.117-141

QuakeCoRE (2009). Historic Earthquake Events. GIS Shapefile, https://projectorbit.maps.arcgis.com/apps/webappviewer/index.html (Accessed on 27 October 2020).

Cubrinovski M, Bray JD, De La Torre C, Olsen MJ, Bradley BA, Chiaro G, Stocks E and Wotherspoon L (2017). “Liquefaction effects and associated damages observed at the Wellington CentrePort from the 2016 Kaikoura earthquake”. Bulletin of the New Zealand Society for Earthquake Engineering, 50(2). https://doi.org/10.5459/bnzsee.50.2.152-173 DOI: https://doi.org/10.5459/bnzsee.50.2.152-173

Survey UG (2016). M 7.8 – 54km NNE of Amberley, New Zealand, 2016-11-13 11:02:56 (UTC). kmz file, https://earthquake.usgs.gov/earthquakes/eventpage/us1000778i/shakemap/pgv (Accessed on 21 December 2019).

Hijmans RJ, Cameron SE, Parra JL, Jones PG and Jarvis A (2005). “Very high resolution interpolated climate surfaces for global land areas”. International Journal of Climatology, 25(15): 1965–1978. https://doi.org/10.1002/joc.1276 DOI: https://doi.org/10.1002/joc.1276

Wald DJ and Allen TI (2007). “Topographic slope as a proxy for seismic site conditions and amplification”. Bulletin of the Seismological Society of America, 97(5): 1379–1395. https://doi.org/10.1785/0120060267 DOI: https://doi.org/10.1785/0120060267

Foster KM, Bradley BA, McGann CR and Wotherspoon LM (2019). “A VS30 Map for New Zealand based on geologic and terrain proxy variables and field measurements”. Earthquake Spectra, 35(4): 1865–1897. https://doi.org/10.1193%2F121118EQS281M DOI: https://doi.org/10.1193/121118EQS281M

Fan Y, Li H and Miguez-Macho G (2013). “Global patterns of groundwater table depth”. Science, 339(6122): 940–943. https://doi.org/10.1126/science.1229881 DOI: https://doi.org/10.1126/science.1229881

Westerhoff RS and White PA (2014). Application of equilibrium water table estimates using satellite measurements to the Canterbury Region, New Zealand. Report GNS Science Report 2013/43 25 p, GNS Science.

Westerhoff R, White P and Miguez-Macho G (2018). “Application of an improved global-scale groundwater model for water table estimation across New Zealand”. Hydrology and Earth System Sciences, 22(12): 6449–6472. https://doi.org/10.5194/hess-22-6449-2018 DOI: https://doi.org/10.5194/hess-22-6449-2018

HydroSHEDS (2006). River Network (Stream Lines) at 30 s Resolution. GIS Shapefile, https://www.hydrosheds.org/page/hydrorivers (Accessed on 27 August 2019).

Lehner B, Verdin K and Jarvis A (2006). HydroSHEDS technical documentation. Report, World Wildlife Fund. https://www.hydrosheds.org/images/inpages/HydroSHEDS_TechDoc_v1_2.pdf

Lehner B, Verdin K and Jarvis A (2008). “New global hydrography derived from spaceborne elevation data”. EOS Transactions American Geophysical Union, 89(10): 93–94. https://doi.org/10.1029/2008eo100001 DOI: https://doi.org/10.1029/2008EO100001

Ministry of Environment (2010). River Environment Classification New Zealand (2010). GIS Shapefile, https://data.mfe.govt.nz/layer/51845-river-environmentclassification-new-zealand-2010/ (Accessed on 4 March 2019).

Land Research New Zealand (2010). New Zealand Land Resource Information (NZLRI) Slope. Geotiff, https://lris.scinfo.org.nz/license/landcare-data-use-licence-v1/ (Accessed on 9 November 2020).

Crown Minerals (2009). NZ Land Extent and Coastline. GIS Shapefile, http://www.crownminerals.govt.nz/cms/pdflibrary/petroleum-blocks-offers-1/northland-andraukumara-block-offers/northland-shapefiles-5-5-mbpdf/view (Accessed on 23 August 2018).

NASA (2009). Distance to the Nearest Coast. csv file, https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/ (Accessed on 3 January 2020).

Land Information New Zealand (2012). NZ 8m Digital Elevation Model. Geotiff, https://data.linz.govt.nz/layer/51768-nz-8m-digital-elevation-model-2012/ (Accessed on 10 March 2021).

Cubrinovski M, Rhodes A, Ntritsos N and Van Ballegooy S (2019). “System response of liquefiable deposits”. Soil Dynamics and Earthquake Engineering, 124: 212–229. https://doi.org/10.1016/j.soildyn.2018.05.013 DOI: https://doi.org/10.1016/j.soildyn.2018.05.013

Downloads

Published

02-12-2022

How to Cite

Lin, A., Wotherspoon, L., & Motha, J. (2022). Evaluation of a geospatial liquefaction model using land damage data from the 2016 Kaikōura earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 55(4), 199–213. https://doi.org/10.5459/bnzsee.55.4.199-213

Issue

Section

Articles

Categories