The significance of polarisation in near-fault ground motions – A case study of February 2023 Kahramanmaras M7.7 earthquake

Authors

  • Saed Moghimi National Resource Canada, Canada
  • Salar Manie Islamic Azad University, Sanandaj Branch, Iran

DOI:

https://doi.org/10.5459/bnzsee.1689

Abstract

This article presents a comprehensive study on directivity effects and impulsive signals in near-fault ground motions, focusing on the case of the Kahramanmaraş earthquake in February 2023. The study investigates the impact of polarisation on pulse-type and non-pulse-type ground motions by computing spectral acceleration values for 180-degree rotated components. The results demonstrate that pulse-type ground motions exhibit higher spectral acceleration values and higher levels of polarisation, particularly in the period ranges close to the pulse period. The findings highlight the significance of directivity effects in seismic hazard analyses and emphasise the need for accurate assessment of directivity effects in seismic design procedures.

References

Barka AA and Kadinsky‐Cade K (1988). “Strike‐slip fault geometry in Turkey and its influence on earthquake activity”. Tectonics, 7(3): 663-684. https://doi.org/10.1029/TC007i003p00663 DOI: https://doi.org/10.1029/TC007i003p00663

Ambraseys NN (1989). “Temporary seismic quiescence: SE Turkey”. Geophysical Journal International, 96(2): 311-331. https://doi.org/10.1111/j.1365-246X.1989.tb04453.x DOI: https://doi.org/10.1111/j.1365-246X.1989.tb04453.x

McClusky S et al. (2000). “Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus”. Journal of Geophysical Research: Solid Earth, 105(B3): 5695-5719. https://doi.org/10.1029/1999JB900351 DOI: https://doi.org/10.1029/1999JB900351

Bulut F, Bohnhoff M, Eken T, Janssen C, Kılıç T and Dresen G (2012). “The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations”. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2011JB008966 DOI: https://doi.org/10.1029/2011JB008966

Duman TY, Emre Ö (2013). “The East Anatolian Fault: geometry, segmentation and jog characteristics”. Geological Society London Special Publications, 372: 495-529. https://doi.org/10.1144/SP372.14 DOI: https://doi.org/10.1144/SP372.14

Somerville PG, Smith NF, Graves RW and Abrahamson NA (1997). “Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity”. Seismological Research Letters, 68(1): 199-222. https://doi.org/10.1785/gssrl.68.1.199 DOI: https://doi.org/10.1785/gssrl.68.1.199

Abrahamson NA (2000). “Effects of rupture directivity on probabilistic seismic hazard analysis”. In Proceedings of the 6th International Conference on Seismic Zonation, Palm Springs, CA, 1: 151-156.

Mavroeidis GP and Papageorgiou AS (2003). “A mathematical representation of near-fault ground motions”. Bulletin of the Seismological Society of America, 93(3): 1099-1131. https://doi.org/10.1785/0120020100 DOI: https://doi.org/10.1785/0120020100

Watson-Lamprey J and Boore DM (2007). “Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot”. Bulletin of the Seismological Society of America, 97(5): 1511-1524. https://doi.org/10.1785/0120070007 DOI: https://doi.org/10.1785/0120070007

Huang Y, Whittaker A and Luco N (2008). “Maximum spectral demands in the near-fault region”. Earthquake Spectra, 24(1): 319-341. DOI: https://doi.org/10.1193/1.2830435

Huang YN, Whittaker AS and Luco N (2010). “NEHRP site amplification factors and the NGA relationships”. Earthquake Spectra, 26(2): 583-593. https://doi.org/10.1193/1.2830435 DOI: https://doi.org/10.1193/1.3381176

Shahi SK and Baker JW (2014). “An efficient algorithm to identify strong‐velocity pulses in multicomponent ground motions”. Bulletin of the Seismological Society of America, 104(5): 2456-2466. https://doi.org/10.1785/0120130191 DOI: https://doi.org/10.1785/0120130191

Campbell KW and Bozorgnia Y (2008). “NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10s”. Earthquake Spectra, 24(1): 139-171. https://doi.org/10.1193/1.2857546 DOI: https://doi.org/10.1193/1.2857546

Power M, Chiou B, Abrahamson N, Bozorgnia Y, Shantz T and Roblee C (2008). “An overview of the NGA project”. Earthquake Spectra, 24(1): 3-21. https://doi.org/10.1193/1.2894833 DOI: https://doi.org/10.1193/1.2894833

Bozorgnia Y et al. (2014). “NGA-West2 research project”. Earthquake Spectra, 30(3): 973-987. https://doi.org/10.1193/072113EQS209M DOI: https://doi.org/10.1193/072113EQS209M

Idriss IM (2013). “NGA-West2 Model for Estimating Average Horizontal Values of Pseudo-Absolute Spectral Accelerations Generated by Crustal Earthquakes”. PEER Report 2013-08”. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.

Boore DM, Watson-Lamprey J and Abrahamson NA (2006). “Orientation-independent measures of ground motion”. Bulletin of the Seismological Society of America, 96(4A): 1502-1511. https://doi.org/10.1785/0120050209 DOI: https://doi.org/10.1785/0120050209

Boore DM (2010). “Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion”. Bulletin of the Seismological Society of America, 100(4): 1830-1835. https://doi.org/10.1785/0120090400 DOI: https://doi.org/10.1785/0120090400

Kalkan E and Kwong NS (2014). “Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings”. Journal of Structural Engineering, 140(3): 04013062. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000845 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000845

BSSC (2009). “NEHRP Recommended Seismic Provisions for New Buildings and Other Structures”. Federal Emergency Management Agency, Washington, DC.

ASCE7-10. (2010). “SEI 7-10: Minimum Design Loads for Buildings and Other Structures”. American Society of Civil Engineers, USA.

Beyer K and Bommer JJ (2006). “Relationships between median values and between aleatory variabilities for different definitions of the horizontal component of motion”. Bulletin of the Seismological Society of America, 96(4A): 1512-1522. https://doi.org/10.1785/0120050210 DOI: https://doi.org/10.1785/0120050210

Chang Z, Wu H, Li W, Yan Z, Peng L and Zhu G (2024). “Analysis of near-fault ground motions in the February 2023 Kahramanmaras, Türkiye, earthquake sequence”. Research Square Preprint (Version 1). https://doi.org/10.21203/rs.3.rs-4282319/v1 DOI: https://doi.org/10.21203/rs.3.rs-4282319/v1

Huang Y, Wu J, Zhang T and Zhang D (2008). “Relocation of the M 8.0 Wenchuan earthquake and its aftershock sequence”. Science in China Series D: Earth Sciences, 51: 1703-1711. https://doi.org/10.1007/s11430-008-0135-z DOI: https://doi.org/10.1007/s11430-008-0135-z

ASCE (2022). “Minimum Design Loads and Associated Criteria for Buildings and Other Structures”. American Society of Civil Engineers, USA.

Baker JW (2007). “Quantitative classification of near-fault ground motions using wavelet analysis”. Bulletin of the Seismological Society of America, 97(5): 1486-1501. https://doi.org/10.1785/0120060255 DOI: https://doi.org/10.1785/0120060255

METU/EERC (2023). “Kahramanmaras-Pazarcik and Elbistan Earthquakes Preliminary Report”. Report No. METU/EERC 2023-01.

Spudich P, Bayless JR, Baker JW, Chiou BS, Rowshandel B, Shahi SK and Somerville P (2013). “Final Report of the NGA-West2 Directivity Working Group”. PEER Report 2103-09, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.

Bolt B (2010). “Engineering Seismology” in Bozorgnia Y and Bertero VV (Editors), Earthquake Engineering: from Engineering Seismology to Performance-Based Engineering. CRC Press, New York.

Bradley BA and Cubrinovski M (2011). “Near-source strong ground motions observed in the 22 February 2011 Christchurch earthquake”. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4): 181-194. https://doi.org/10.5459/bnzsee.44.4.181-194 DOI: https://doi.org/10.5459/bnzsee.44.4.181-194

Luzi L, D’Amico M, Massa M and Puglia R (2019). “Site effects observed in the Norcia intermountain basin (Central Italy) exploiting a 20-year monitoring”. Bulletin of Earthquake Engineering, 17: 97-118. https://doi.org/10.1007/s10518-018-0444-3 DOI: https://doi.org/10.1007/s10518-018-0444-3

Iervolino I and Cornell CA (2008). “Probability of occurrence of velocity pulses in near-source ground motions”. Bulletin of the Seismological Society of America, 98(5): 2262-2277. https://doi.org/10.1785/0120080033 DOI: https://doi.org/10.1785/0120080033

Chioccarelli E and Iervolino I (2010). “Near‐source seismic demand and pulse‐like records: A discussion for L'Aquila earthquake”. Earthquake Engineering and Structural Dynamics, 39(9): 1039-1062. https://doi.org/10.1002/eqe.987 DOI: https://doi.org/10.1002/eqe.987

Luzi L et al. (2017). “The central Italy seismic sequence between August and December 2016: Analysis of strong‐motion observations”. Seismological Research Letters, 88(5): 1219-1231. https://doi.org/10.1785/0220170037 DOI: https://doi.org/10.1785/0220170037

Tang Y and Zhang (2011). “Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions”. Soil Dynamics and Earthquake Engineering, 31(1): 59-76. https://doi.org/10.1016/j.soildyn.2010.08.006 DOI: https://doi.org/10.1016/j.soildyn.2010.08.006

Zhai C, Chang Z, Li S, Chen Z and Xie L (2013). “Quantitative identification of near‐fault pulse‐like ground motions based on energy”. Bulletin of the Seismological Society of America, 103(5): 2591-2603. https://doi.org/10.1785/0120120320 DOI: https://doi.org/10.1785/0120120320

Chang Z, Wu H and Goda K (2024). “Automated parameterization of velocity pulses in near‐fault ground motions”. Earthquake Engineering and Structural Dynamics, 53(3): 997-1005. https://doi.org/10.1002/eqe.4053 DOI: https://doi.org/10.1002/eqe.4053

Reyes J and Kalkan E (2012). “Relevance of fault-normal/parallel and maximum direction rotated ground motions on nonlinear behaviour of multi-story buildings”. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.

Somerville PG (2003). “Magnitude scaling of the near fault rupture directivity pulse”. Physics of the Earth and Planetary Interiors, 137(1-4): 201-212. https://doi.org/10.1016/S0031-9201(03)00015-3 DOI: https://doi.org/10.1016/S0031-9201(03)00015-3

AFAD (2023). “06 Şubat 2023 Pazarcık-Elbistan Kahramanmaraş (Mw: 7.7- Mw: 7.6) Depremleri Raporu”. Deprem Dairesi Başkanlığı (in Turkish). https://deprem.afad.gov.tr/assets/pdf/Kahramanmaras%20%20Depremleri_%20On%20Degerlendirme%20Raporu.pdf

Alavi B and Krawinkler H (2004). “Behaviour of moment‐resisting frame structures subjected to near‐fault ground motions”. Earthquake Engineering and Structural Dynamics, 33(6): 687-706. https://doi.org/10.1002/eqe.369 DOI: https://doi.org/10.1002/eqe.369

Fu Q and Menun C (2004). “Seismic-environment-based simulation of near-fault ground motions”. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada.

Shahi SK (2013). “A probabilistic framework to include the effects of near-fault directivity in seismic hazard assessment”. Stanford University, CA, USA.

Caltrans (2013). “Seismic Design Criteria. California Department of Transportation: Sacramento”. Version 1.7, CA, USA.

Downloads

Published

01-12-2024

How to Cite

Moghimi, S., & Manie, S. (2024). The significance of polarisation in near-fault ground motions – A case study of February 2023 Kahramanmaras M7.7 earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 57(4), 181–193. https://doi.org/10.5459/bnzsee.1689