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ABSTRACT

Reinforced concrete frames infilled with masonry panels constitute an important part of the high-risk
structures in different regions of high seismicity. In some developing countries, they are still used as main
structural system for low to medium rise buildings. Consequently, reliable methods to analyse infilled
frames are required in order to reduce the loss of life and property associated with a possible structural
failure.

The equivalent strut model, proposed in the 1960s, is a simple procedure to represent the effect of the
masonry panel. Several improvements of the original model have been proposed, as a result of a better
understanding of the behaviour of these structures and the development of computer software. This paper
presents a new macro-model for the evaluation of the global response of the structure, which is based on a
multi-strut formulation,. The model, implemented as 4-node panel element, accounts separately for the
compressive and shear behaviour of masonry using a double truss mechanism and a shear spring in each
direction. The principal premises in the development of the model are the rational consideration of the
particular characteristics of masonry and the adequate representation of the hysteretic response.
Furthermore, the model is able to represent different modes of failure in shear observed for masonry infills.
The comparison of analytical results with experimental data showed that the proposed model, with a proper
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calibration, is able to represent adequately the in-plane response of infilled frames.

1 INTRODUCTION

Infilled frames are complex structures which exhibit a highly
nonlinear inelastic behaviour. The most important factors
contributing to this behaviour arise from material nonlinearity,
namely, (i) cracking and crushing of the masonry panel, (ii)
cracking of the concrete, yielding of the reinforcing bars and
local bond slip in the surrounding frame, and (iii) degradation
of the bond-friction mechanism and variation of the contact
length along the panel-frame interfaces. Geometric nonlinear
effects can also occur in infilled frames, especially when the
structure is able to resist large horizontal displacements.
However, these effects do not present any particularity and can
be considered in the analysis using the same methodologies
applied to reinforced concrete or steel structures. The nonlinear
effects mentioned above introduce analytical complexities
which required sophisticated computational techniques to be
properly considered in the modelling. Furthermore, some
mechanical properties are difficult to define accurately,
especially those of masonry and of the panel-frame interfaces.
These facts complicate the analysis of infilled frames and
represent one of the principal reasons to explain why infill
panels has been considered as "non-structural elements", despite
their strong influence on the global response.

Different modelling techniques have been used for the analysis
of infilled frames, which can be divided into two main groups:
(i) local or micro-models and (ii) simplified or macro-models,
Crisafulli, et al., 2000. The first group involves the models in
which the structure is divided into numerous elements (usually
of different types) to take account of the local effects in detail,
whereas the second group includes simplified models based on
a physical understanding of the behaviour of the infill panel. In
the later case, a few elements are used to represent the effect of
the masonry infill as a whole. Both types of models present
advantages and disadvantages, and the selection of the more
adequate option should consider the characteristics of each case
and the objectives of the analysis. The typical example of the
macro-model for infilled frames is the diagonal strut model, see
Fig. 1 (a), developed several decades ago based on the
analytical work conducted by Polyakov (as reported by Mallick
and Severn, 1967). Later, Holmes, 1961, proposed that the
equivalent diagonal strut should have a width equal to one third
of the length of the panel and Stafford Smith, 1962, improved
the approach based on experimental data. This task was
continued by many other researchers, who refined the model,
mainly by considering several struts to represent the panel (a
more complete description can be found elsewhere, Crisafulli,
2000).
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In order to analyse large structures or complete buildings, it
seems that a simple, but physically reasonable model constitutes
the best alternative. Consequently, this paper presents the
development and implementation of a macro-model for the
representation of the masonry panel in infilled frames. This
model considers a multi-strut formulation, which can be useful
when the objective of the analysis focuses on the global
response of the structure.

2. PRELIMINARY STUDY

A preliminary study was conducted to investigate the
limitations of the single strut model and the influence of
different multi-strut models on the structural response of the
infilled frame. The study focussed on the lateral stiffness of the
structure and on the actions induced in the surrounding frame.
Figure 1 illustrates the three strut models considered in the
study, which are referred as Model A, B and C, respectively.
The total area of the equivalent masonry strut, Ans, was the
same in all the cases. It was assumed in Model C that the
sectional area of the central strut was the double of that
corresponding to the off-diagonal struts. The separation
between the struts in Models B and C was adopted as a fraction
of the contact length, z, defined by Stafford Smith, 1966,

It must be noted that the models shown in Figure 1 are valid
for static analysis because the struts are located in order to
represent the diagonal compressive field that develops in the
panel. When the structure is subjected to cyclic or dynamic
loading, the diagonal struts should change according the
direction of the loading.

The use of only one diagonal strut resisting compressive and
tensile forces cannot describe properly the internal forces
induced in the members of the frame. In this case, at least two
struts following the diagonal directions of the panel must be
considered to represent approximately the effect of the masonry
infill. 1t is usually assumed that the diagonal struts are active
only when subjected to compressive forces. However,
compression-only elements are not available in common elastic
computer programs. In this case, it is recommend the use of
tension-compression truss members in both directions with half
of the equivalent strut area in each diagonal direction. The use
of this simplified model results in significant changes in the
internal forces in the surrounding frame, especially the axial
forces in the columns (tensile forces decrease, whereas
compressive forces increase).  The assumption of a
compression-only strut is acceptable on the basis that the bond
strength at the panel-frame interfaces and the tensile strength of
the masonry are very low. Tensile forces, therefore, can be
transferred through the interfaces only for small levels of
seismic excitation. This consideration may not be valid when
either shear connectors are used at the interfaces or the masonry
panel is reinforced with horizontal or vertical bars. Refined
models, however, can consider the tensile behaviour, which
usually does not affect significantly the results.

(a) Model A (b) Model B
— . —_
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(c) Model C
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Figure 1. Strut models considered in the preliminary study.

Numerical results obtained from the strut models A, B and C
were compared with those corresponding to a refined finite
element model (FEM) implemented with the program
ABAQUS. The general characteristics of this model are
described by Crisafulli, 1997. The lateral stiffness of the
structure was similar in all the cases considered, with smaller
values for models B and C. It must be noted that, for the multi-
strut models, the stiffness may significantly change depending
on the separation between struts. Figure 2 compares the
bending moment diagrams obtained from one typical example
according to the different models used in this study. Model A
underestimates the bending moment because the lateral forces
are primarily resisted by a truss mechanism. On the other hand,
Model B leads to larger values than those corresponding to the
finite element model. A better approximation is obtained from
Model C, although some differences arise at the ends of both
columns. Similar conclusions can be drawn regarding the shear
forces. The maximum axial forces in the frame members are
approximately equal in all the models, even though the
variation of the axial forces along the columns shows some
discrepancy at the top end of the tension column and at the
bottom end of the compression column.

— ——-Model C

e

Figure 2. Bending moment diagrams obtained from different
models .

It can be concluded that the single strut model, despite its
simplicity, can provide an adequate estimation of the stiffness
of the infilled frame and the axial forces induced in the frame



members by lateral forces. However, a more refined model,
Model C, is required in order to obtain realistic values of the
bending moments and shear forces in the frame.

3. FAILURE MODES OF THE MASONRY PANEL

According to the literature, the most common types of failure

are, Crisafulli, 1997:

« shear failure due to debonding of the mortar-brick
interfaces (shear-friction failure), which can occur
following a stepped cracking pattern or by horizontal
sliding along a mortar joint,

. diagonal tension failure of the masonry units, as a result of
a combination of compressive and shear stresses in the
masonry, and

. crushing of the masonry at the corners due to high
compressive stresses.

Macro-models, due to their simplicity, cannot represent
precisely all the different types of failure observed for masonry
panels. For this reason, a preliminary study should be conducted
before modelling the structure in order to estimate the expected
mode of failure of the masonry panel. This can be achieved by
applying the failure theory proposed by Mann and Miller
(1982) or by Crisafulli et al. (1995) and (2002). After this
preliminary study, the failure of masonry can be adequately
considered in the model using a proper combination of strut and
shear springs.

The failure due to crushing of the masonry at the corners is
uncommon for infilled reinforced concrete frames, although it
has been observed in infilled steel frames. In this case, the
surrounding frame is more flexible and the contact length
between the panel and the frame is smaller. This situation can
be also represented with the triple strut model illustrated in Fig.
3, in which the central strut is divided into two elements with
different areas, in order to consider approximately the increase
of axial stresses occurring in the corners of the panels. It is
worth noting that this idea is presented here in a general sense.
The practical application of this model requires further research
in order to investigate the values of the area and length of the
reduced element of the central strut.

—

Reduced element

Figure 3. Multi-strut model proposed to represent the
crushing of the masonry at the corners of the

panel.
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4. PROPOSED MACRO-MODEL

41 General description of the model

A new macro-model is proposed in this paper in order to
represent, in a rational but simple way, the effect of masonry
infill panels. The model is implemented as a 4-node panel
element which is connected to the frame at the beam-column
joints. Internally, the panel element accounts separately for the
compressive and shear behaviour of the masonry panel using
two parallel struts and a shear spring in each direction, see Fig.
4. This configuration allows an adequate consideration of the
lateral stiffness of the panel and of the strength of masonry
panel, particularly when a shear failure along mortar joints or
diagonal tension failure is expected. Furthermore, the model is
easy to apply in the analysis of large infilled frame structures.
The main limitation of the model results from its simplicity,
since the panel is connected to the beam-column joints of the
frame it is not able to predict properly the bending moment and
shear forces in the surrounding frame.

It is assumed in the model that the stiffness of the shear spring,
ks, is equal to a fraction, y, of the total stiffness of the masonry
strut

K, =7, P En 052 (1)
d m

where A is the total area of the equivalent strut (defined by
several researchers based on experimental and analytical data,
see Crisafulli, 1997), E, is the elastic modulus of masonry and
d,, is the diagonal length of the masonry panel. The term cos? 0
is introduced in Eq. (1) to express the stiffness in the horizontal
direction, being 6 the inclination of the diagonal of the infill
panel. The factor ys usually varies from 0.50 to 0.75, according
to the results obtained by the authors when calibrating the
model.

shear spring

masonry strut

h,

Figure 4. Proposed multi-strut model (only the struts and
shear spring active in one direction are
represented).

The hysteretic response of the shear spring is modelled
following an elasto-plastic rule with variable shear strength
(Crisafulli, 1997). The shear strength of the spring is controlled
by a shear-friction mechanisms which can be adequately
represented by the Mohr-Coulomb criterion. Therefore, the
strength is evaluated considering two different stages, namely,
(i) elastic response before the bond-shear strength is reached,
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and (ii) sliding, in which the strength depends on the
compressive force of the struts. In the latter case, the shear
strength is limited in order to avoid large values due to high
axial forces in the struts.

The evaluation of the stiffness of the shear spring considered in
the model, based on Eg. (1), does not reflect the actual shear
behaviour of the masonry panel, but represents a practical
approach which leads to adequate values of the lateral stiffness
of the infilled frame. In this way, it is possible to use the
existing empirical expressions proposed for the calculation of
the equivalent width of the masonry strut. Additional
experimental and analytical research is required in order to
develop a more rational procedure which will be able to take
into account the shear response of the infill panel not only in
terms of strength but also in terms of stiffness.

The axial stiffness of each strut, k,;, accounts for the remaining
fraction (1-ys) of the total stiffness which is assigned to two
struts with equal area, see Fig. 1 (b):

_ (1_75) Ans Et
ai — 2 dm (2)

where E; is tangent modulus of the masonry defined according
to an adequate hysteretic model for masonry. This is required in
order to conduct nonlinear dynamic analyses of infilled frames
subjected to earthquakes. In the proposed model, the response
of the axial struts is represented according to a hysteretic stress-
strain relationship developed by Crisafulli, 1997. The axial
force and the axial displacement in the strut are related to the
stress and strain of the masonry according to basic relationships
of the structural analysis.

The area of the equivalent strut, A, can decrease as the lateral
displacement of the structure, and consequently the axial
displacement of the strut, increases. This is due to the reduction
of the contact length between the panel and the frame, and due
to the cracking of the masonry infill. It is assumed in the
proposed model that the area of the equivalent varies as a
function of the axial displacement A,, following the criterion
illustrated in Fig. 5. The variation of the strut area Aps is
introduced in the model to gain generality, even though there is
insufficient information to estimate the practical values of this
variation. According to experimental results reported by
Decanini and Fantin (1986) the equivalent width of the strut
decreases by about 20% to 50% due to cracking of the masonry
panel. However, these values were derived under the
assumption that the modulus E; remains constant, whereas the
proposed model considers a variable modulus, which decreases
as the axial compressive strain increases. The main advantage
of this approach is that the user can control the variation of the
stiffness and the axial strength of the masonry strut.

The response in the initial stage is primarily controlled by the
shear spring and the bending moments and shear forces in the
frame are similar to those obtained from the triple-strut model
(Model C, Fig. 1). After the shear strength is reached and
sliding starts, the mechanisms changes resulting in a significant
increase of the actions induced in the frame.

Strut area

>

msl

A ms2

Na2 Aat

Axial displacement

Figure 5. Variation of the strut area considered in the model.

4.2 Formulation of the model

The practical implementation of the proposed model requires
the use of several spring elements and beam or beam-column
elements to represent the masonry panel and the surrounding
frame. In order to simplify the application of the proposed
model, from the user point of view, a 4-node panel element has
been formulated and implemented in the structural program
RUAUMOKO (Carr, 2002). In this way, the user only needs to
define the characteristics of the masonry infill as a whole
element, whereas the program evaluates internally the
properties of the struts and the shear spring. Fig. 6 illustrates
the main characteristics of the proposed panel element.

The vertical separation of both struts, h,, varies between z/3 and
z/2, being z the contact length between the panel and the frame
(Stafford Smith, 1966):

T

Z= 3
2 3)
where h is the storey height,

PR E,tsing @

4E I N,

t is the masonry thickness, E. is the elastic modulus of the
concrete, I, is moment of inertia of the columns and h,, is the
height of the masonry panel.

Three different sets of nodes are considered for the
development of the panel element, namely, external nodes,
internal nodes and dummy nodes. The external nodes are those
connected to the principal structure, whereas the internal nodes
are defined by a horizontal and a vertical offset, X,; and y,;
respectively, measured from the external node i. This is
intended to represent the reduction of the dimensions of the
panel due to the depth of the frame members.



E —f

internal dummy
node (2 dof)

internal node
(3 dof)

J
external node/@E
(3 dof)

@

Figure 6. Proposed 4-node panel element.

Three degrees of freedom, the translations u and v and the
rotation 0, are considered in each of the external and internal
nodes. Four dummy nodes, with 2 translational degrees of
freedom per node, are required to define the end of the strut
members which is not connected to the corners of the panel.
The formulation of the stiffness matrix and the nodal forces of
the panel element is conducted considering the equilibrium and
compatibility equations between the forces and displacement of
the different coordinates systems. These relationships, derived
from the principle of Virtual Displacement (Livesly,1975),
indicate that if a transformation matrix [Q] relates the
displacements {u} and {u}g expressed in two different systems
of rectangular coordinates, the transpose of this matrix, [Q]",
also transforms the nodal forces {F}g to {F}a. It can be shown
that the stiffness matrix in the coordinates system “B” is equal
to the double product of the matrix [Q] applied to the stiffness
matrix in the coordinates system “A”:

uh =Rl uls. {Fls=RI" {Fla (5a)

Kl =[Q" K], [Q] (5b)

These relationships are successively applied to transform the
structural parameters of each strut and spring of the model to
the global system of coordinates, associated with the external
nodes of the panel element.
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43 Axial behaviour of the struts

Eqg. (2) gives the axial stiffness of each strut in local coordinates
(referred to the axial displacement). Consequently, a series of
transformations are required to obtain the stiffness matrix in
global coordinates and related to the displacements of the
external nodes of the panel element. This process is developed
according to the structural concepts presented in Section 4.2,
and comprises three transformations, which are described in the
following paragraphs. Each transformation will be referred
using the sub-index A, B and C.

The first transformation required in the analysis relates the axial
displacement of the strut, A,, to the horizontal and vertical
displacements, u and v, at the ends j and k of the strut:

[

A, =[el, {1 ©)

Vi

where the matrix [Q]a is defined as a function of the inclination
of the strut referred to the global system, 6;, see Fig. 6 (a):

[Q], =[-cos6, —-sind, coso, sing,] @

The second transformation relates the displacements u and v at
both ends of the strut to the global displacements, u, vand ¢, at
the internal nodes of the panel element. It must be noted that
each strut has one end connected to a dummy node and the
other end connected directly to an internal node (see Fig. 7).
Therefore the second transformation needs to be formulated in
two steps. The first step considers the relationship between the
displacements at the internal dummy node j and the adjacent
internal nodes m and n:

{3} -[Qlo {7 ®

J

q’n 1

where the sub-indexes D and | refers to dummy and internal
nodes, respectively. The matrix [Q];p (2x6) can be formulated
using interpolation functions which relates the displacements u
and v corresponding to a point located at a distance s from the
internal node. Itis found (Crisafulli, 1997) that the terms of this
matrix are:

Q(L,1)p = Q; cos” & + Qs sen” &

Q(1,2)ip=Q(2,1)ip = (Q1 - Qs) cos & sen &

Q(1,3)ip =Qz cos &

Q(1.4)1p = Qs cos® & + Qg sen” 6k

Q(1,5)ip = Q(2,4)ip = (Q3 - Qg) cOs & sen & 9)
Q(1,6)1p = Q4 cOs &

Q(2,2)ip = Q1 Sin® G + Qs cos” G

Q(2,3)ip = Qysin &

Q(25)p = Qs sin & + Qg cos” Gk

Q(2,6)1p = Q4 sin &
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where O is the inclination of the edge (see Fig. 7),
Q=1-37+27
Q=@-2/+7)Le

Q=3/-27 (10)
Q=7 +1)Le

Qs=1-y%

Q5= x

Lg is the length of the edge and y = s/Lg.

internal dummy |
s |

@L node

Figure 7. Detail of one edge of the panel element.

At the other end (node k) the strut is directly connected to an
internal node and no special calculations are required for the
second step in this transformation. Based on this consideration,
and taking into account Eq. (8), the relationship between the
displacement at u and v at the end of the strut and the global
displacements at the three internal nodes (represented by sub-
index 1) related to the strut is:

=Rk 1y, (1)

Py |

where the matrix [Q]g includes the transformation defined by
Eq. (11):

) Q.Dj
[Q]B_z[oooo
00000O0TO

The final transformation relates the displacements of the
internal nodes to the displacement of the external nodes. This
relationship for one node is given by:

(12)

o B O O
= O O O
o O O o

u u
Ve = [Q]EI v (13)
%4 (4

| E

where the matrix [Q]g is a function of the horizontal and
vertical offsets, X,m and yom, corresponding to node m, see Fig.
6 (b):

10 ~Yom
[Q]EI =10 1 Xo (14)
00 1

The transformation indicated by Eq. (14) needs to be applied
three times, since each strut is related to three external nodes.
For example, the strut 1 in Fig. 6(a) contributes to the external
nodes 1, 2 and 4. Therefore, the complete transformation is:

m m
Vm Vm
Pm Pm
un un
Vi = [Q ]C Vi (15)
Pn @n
Uy Uy
Vi Vi
P e P ),

where the transformation matrix is:

10 -y, 00 0 00 O
01 %X, 00 0 00 0
00 1 00 0O 00 O
00 0 10 -y, 00 0

[Q.=lo 0o 0o 01 x, 00 0 |(@6)
00 0 00 1 00 0
00 0 00 0 10 -y,
00 0 00 0 01 x4
00 0o 00 0O 00 1 |

The complete procedure for the formulation of the stiffness
matrix can be summarized in the following steps:

a) Select the active struts in the model (1 and 3, or 2 and 4)
depending on the direction of the loading.

b) Evaluate the axial stiffness of the strut i, k;, using Eq. (2).

c) Calculate the stiffness matrix referred to the global
displacements u and v at both ends of the strut, according to
Egs. (5b) and (7):

[Kila = R ka [l an
(4x4) (4x1) (1x4)

d) Calculate the stiffness matrix of the strut referred to the
three internal nodes (with three degrees of freedom at each



node, u, v and o), considering Egs. (5b) and (12)
Kl = RE [kl [k (18)

(9x9) 9x4) (4x4) (4x9)

e) Calculate the stiffness matrix of the strut referred to the
three external nodes (with three degrees of freedom at each
node, u, v and ¢), based on Egs. (5b) and (16)

Kl =RE Kl [k (18)

9x9) (9x9) 9x9) 9x9)

f) Assemble the terms of the matrix [Kj]c into the matrix of
the panel element, [K,], (12 x 12), taking into account the
nodes related to the strut. In the case of the strut 1, which is
related to the external nodes 1, 2 and 4, the contribution of
this strut to the total stiffness matrix is:

[* % % % % x 0 0 0 * * *]
k ok x ok ok k0 0 Q *x x ¥
ok ok x ok ok Q0 Q * Kk ok
£k x x k x Q0 * * o*
£k x ok k x QO * * *
k% x ok ok ox 0 Q0 % x *
[, ]= (19)
00 0O0OOOOOOOODQO
00 0O0OOOOOOOODO
0 00O0OOOOOOOODQO
* ox Kk k x *x Qg Q0 Q * * *
* ox Kk k x *x Qg Q0 Q0 * * *
* x * *x x *x 0 0 Q0 * * *

where the symbol * indicates a nonzero term in the matrix,
which is obtained from matrix [K]c.

g) Repeat the same process for the second strut in the model in
order to complete the stiffness matrix of the panel element.

A similar process of successive transformations should be
applied in order to assemble the vector of nodal forces (12
terms), based on Eq. (5a).

4.4 Shear behaviour of the spring

The consideration of the shear behaviour of the panel element is
simpler, since only one spring element is used. This spring is
connected to two diagonally opposite internal nodes depending
on the direction of the shear force, see Fig. 6(b). It is worth
noting that the implementation of the proposed model in a panel
element allows the calculation of the axial forces in the struts to
be used for evaluating the strength of the shear spring. This
inter-relationship between different members is not possible to
be considered in most of the existing programs for structural
analysis.

The stiffness of the spring and the shear force are associated
with the horizontal displacement, u, of the two diagonally
opposite nodes (nodes land 3 or 2 and 4, depending on the
loading direction). Consequently, the stiffness matrix of the
shear spring related to the displacements of the internal nodes n
and Kk is:
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k, 0 0 -k 0 O
0 00 O 0O
0 00 O 0O
[K.]= 00 Kk 0o (20)
—Rs s
00 O 00O
L0 00 0 0 0]
where the term Kk is defined by Eqg. (1). The only

transformation required in this case is that given by Egs. (13)
and (14), which relate the internal nodes to the external nodes:

n n
Vn Vn
Pn Pn
= 21
0 Rl " (21)
Vi Vi
Pl g P ),
where the transformation matrix is:
1 0 ~Yon 0 0 0
01 x,, 0O 0
00 1 00 0
= 22
[k 00 0 1 0 -y, @
00 0 01 xg
00 0 00 1 ]

Based on Eq. (5b), the stiffness matrix of the shear spring
related to the external to two external nodes of the panel is:

K =RE [KJ] [l (23)

(6 x 6) (6 x 6) (6 x 6) (6 x 6)

Finally, the terms of the matrix [Ks]p need to be added to the
total stiffness matrix [K;] considering that the shear spring is
connected to nodes 1and 3 or 2 and 4, depending on the loading
direction.

5. CONSIDERATIONS FOR 3-D MODELS

In recent years there has been a significant increase in both the
power of computers and the capacity of the software available
for structural analysis. As a result, today it is possible to
perform the nonlinear analysis of complete structures using 3D
models.

The strut model (single or multi-strut) has been developed and
used to evaluate the in-plane behaviour of masonry infills,
however, the out-of-plane response cannot be adequately
represented because the infill behaves as an unreinforced slab.
When implementing the proposed model in a 3-D computer
program the following considerations should be taken into
account. The masonry panel in the model should be a plane
panel (in the undeformed state). This means than the four nodes
of the panel should be in a plane. If the panel is not plane,
other effects can be important (shell or membrane behavior),
which are not considered in the model presented here. When the
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direction normal to the panel coincides with one of the global
axes (e.g. the axis Z), the solution is simple. It must be
considered that the stiffness matrix of the panel (12 x 12)
contributes only to the 12 global degrees of freedom in the
plane of the panel (XY). Inthis case, the displacements along Z
and the rotations about X and Y should be ignored, because the
model is not able to represent the out-of-plane behaviour.

A more precise representation of the spatial behaviour of the
infill frame will require the consideration of the out of plane
response. For example, the panel can be considered as a “slab”,
but this behaviour probably degrades rapidly as the
displacement increases. This complex representation of the
infill panel exceeds the scope of the strut model, which is
applied as a simplified representation. For more refined
modeling, the use of 2-D or 3-D nonlinear finite elements to
represent the entire panel could be a proper solution.

6. NUMERICAL EXAMPLES

The proposed model was applied to represent the response of a
infilled frame tested at the University of Canterbury under
vertical and cyclic lateral loading, in which a shear failure
occurred (Crisafulli, 1997).  Using the computer program
RUAUMOKUO (Carr, 2000), the lateral and vertical forces were
applied in successive increments, in which the mechanical
properties of the structure were updated according to the strains
and displacements induced in the different components of the
model in the previous step. The separation of the struts was
adopted as h, = 0.23 m, which is equivalent to z/2. The
properties of the model associated with the axial cyclic
behaviour of masonry were adopted from tests of the materials.

Figure 8 compares experimental and analytical results in the
range of small displacements in order to observe clearly the
response in the initial stage. The force level at which shear
cracking occurs according to the analytical procedure, 59.8 kN,
agrees very well with the measured value equal to 65.0 kN.
The overall theoretical response is compared in Fig. 9 with the
strength envelope measured during the test, indicating that the
proposed model can estimate the lateral resistance of the infilled
frame and the strength degradation observed for large
displacements. In addition, the failure mechanism is properly
represented, being the analytical model capable of describing
the shear cracking of the masonry panel and the yielding of the
tension column of the frame.

The proposed model has been also implemented in the program
SesimiStruct (SesimiSoft, 2006) and numerical results were
compared to experimental data by Smyrou et al. (2006),
showing the accuracy of the model to evaluate the nonlinear
response of the structure. Furthermore, they conducted an
interesting sensitivity analysis to evaluate the relative
importance of the parameters used in the model to represent the
cyclic response of masonry.

7. CONCLUSIONS

This paper describes a refined macroscopic model for infilled
frames, in which the principal premises are the rational
consideration of the particular characteristics of masonry and
the adequate representation of the hysteretic response.

Since shear failure of the masonry (shear friction and diagonal
tension failure) is the most common type of failure observed in
amasonry panel, a multi-spring model is developed to represent
specifically this situation. The model accounts separately for
the compressive and shear behaviour of masonry using a double
truss mechanism and a shear spring in each direction. The
proposed configuration allows the calculation of the axial forces
in the strut to be used for the evaluation of the shear strength of
the masonry panel. This concept is implemented in a 4-node
panel element which is being incorporated in the computer
program RUAUMOKO (Carr, 2000).

The comparisons between experimental data obtained by the
authors and other researchers and analytical results indicate that
the cyclic response of infilled frames can be properly
represented by the proposed model. This, however, requires a
fine calibration of the model, which is usually achieved after
several adjustments, particularly the parameter defining the
hysteretic behaviour of masonry. The need of these adjustments
indicates that the detail prediction of the real cyclic response of
infilled frames is still a difficult task.

Recommendations are also given for the analysis of infilled
frames when failure due to crushing of the corners is expected
in the masonry panels. Further research is required in order to
implement this model.
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Figure 8. Comparison between experimental and analytical
data in the range of small displacements.
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data in the range of small displacements.
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