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ABSTRACT 
 
Reinforced concrete frames infilled with masonry panels constitute an important part of the high-risk 
structures in different regions of high seismicity. In some developing countries, they are still used as main 
structural system for low to medium rise buildings.  Consequently, reliable methods to analyse infilled 
frames are required in order to reduce the loss of life and property associated with a possible structural 
failure. 
  
The equivalent strut model, proposed in the 1960s, is a simple procedure to represent the effect of the 
masonry panel. Several improvements of the original model have been proposed, as a result of a better 
understanding of the behaviour of these structures and the development of computer software. This paper 
presents a new macro-model for the evaluation of the global response of the structure, which is based on a 
multi-strut formulation,.  The model, implemented as 4-node panel element, accounts separately for the 
compressive and shear behaviour of masonry using a double truss mechanism and a shear spring in each 
direction. The principal premises in the development of the model are the rational consideration of the 
particular characteristics of masonry and the adequate representation of the hysteretic response.  
Furthermore, the model is able to represent different modes of failure in shear observed for masonry infills.  
The comparison of analytical results with experimental data showed that the proposed model, with a proper 
calibration, is able to represent adequately the in-plane response of infilled frames. 
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1. INTRODUCTION 

Infilled frames are complex structures which exhibit a highly 
nonlinear inelastic behaviour.  The most important factors 
contributing to this behaviour arise from material nonlinearity, 
namely, (i) cracking and crushing of the masonry panel, (ii) 
cracking of the concrete, yielding of the reinforcing bars and 
local bond slip in the surrounding frame, and (iii) degradation 
of the bond-friction mechanism and variation of the contact 
length along the panel-frame interfaces.  Geometric nonlinear 
effects can also occur in infilled frames, especially when the 
structure is able to resist large horizontal displacements.  
However, these effects do not present any particularity and can 
be considered in the analysis using the same methodologies 
applied to reinforced concrete or steel structures.  The nonlinear 
effects mentioned above introduce analytical complexities 
which required sophisticated computational techniques to be 
properly considered in the modelling.  Furthermore, some 
mechanical properties are difficult to define accurately, 
especially those of masonry and of the panel-frame interfaces.  
These facts complicate the analysis of infilled frames and 
represent one of the principal reasons to explain why infill 
panels has been considered as "non-structural elements", despite 
their strong influence on the global response. 
 

Different modelling techniques have been used for the analysis 
of infilled frames, which can be divided into two main groups: 
(i) local or micro-models and (ii) simplified or macro-models, 
Crisafulli, et al., 2000.   The first group involves the models in 
which the structure is divided into numerous elements (usually 
of different types) to take account of the local effects in detail, 
whereas the second group includes simplified models based on 
a physical understanding of the behaviour of the infill panel.  In 
the later case, a few elements are used to represent the effect of 
the masonry infill as a whole.  Both types of models present 
advantages and disadvantages, and the selection of the more 
adequate option should consider the characteristics of each case 
and the objectives of the analysis. The typical example of the 
macro-model for infilled frames is the diagonal strut model, see 
Fig. 1 (a), developed several decades ago based on the 
analytical work conducted by Polyakov (as reported by Mallick 
and Severn, 1967). Later, Holmes, 1961, proposed that the 
equivalent diagonal strut should have a width equal to one third 
of the length of the panel and Stafford Smith, 1962, improved 
the approach based on experimental data.  This task was 
continued by many other researchers, who refined the model, 
mainly by considering several struts to represent the panel (a 
more complete description can be found elsewhere, Crisafulli, 
2000).  
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In order to analyse large structures or complete buildings, it 
seems that a simple, but physically reasonable model constitutes 
the best alternative.  Consequently, this paper presents the 
development and implementation of a macro-model for the 
representation of the masonry panel in infilled frames.  This 
model considers a multi-strut formulation, which can be useful 
when the objective of the analysis focuses on the global 
response of the structure. 
 
 

2. PRELIMINARY STUDY 

A preliminary study was conducted to investigate the 
limitations of the single strut model and the influence of 
different multi-strut models on the structural response of the 
infilled frame.  The study focussed on the lateral stiffness of the 
structure and on the actions induced in the surrounding frame. 
Figure 1 illustrates the three strut models considered in the 
study, which are referred as Model A, B and C, respectively.  
The total area of the equivalent masonry strut, Ams, was the 
same in all the cases.  It was assumed in Model C that the 
sectional area of the central strut was the double of that 
corresponding to the off-diagonal struts.  The separation 
between the struts in Models B and C was adopted as a fraction 
of the contact length, z, defined by Stafford Smith, 1966, 
 
  It must be noted that the models shown in Figure 1 are valid 
for static analysis because the struts are located in order to 
represent the diagonal compressive field that develops in the 
panel.  When the structure is subjected to cyclic or dynamic 
loading, the diagonal struts should change according the 
direction of the loading.  
 
 The use of only one diagonal strut resisting compressive and 
tensile forces cannot describe properly the internal forces 
induced in the members of the frame.  In this case, at least two 
struts following the diagonal directions of the panel must be 
considered to represent approximately the effect of the masonry 
infill.  It is usually assumed that the diagonal struts are active 
only when subjected to compressive forces. However, 
compression-only elements are not available in common elastic 
computer programs.  In this case, it is recommend the use of 
tension-compression truss members in both directions with half 
of the equivalent strut area in each diagonal direction.  The use 
of this simplified model results in significant changes in the 
internal forces in the surrounding frame, especially the axial 
forces in the columns (tensile forces decrease, whereas 
compressive forces increase).  The assumption of a 
compression-only strut is acceptable on the basis that the bond 
strength at the panel-frame interfaces and the tensile strength of 
the masonry are very low.  Tensile forces, therefore, can be 
transferred through the interfaces only for small levels of 
seismic excitation.  This consideration may not be valid when 
either shear connectors are used at the interfaces or the masonry 
panel is reinforced with horizontal or vertical bars.  Refined 
models, however, can consider the tensile behaviour, which 
usually does not affect significantly the results. 
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Figure 1. Strut models considered in the preliminary study. 
 
Numerical results obtained from the strut models A, B and C 
were compared with those corresponding to a refined finite 
element model (FEM) implemented with the program 
ABAQUS. The general characteristics of this model are 
described by Crisafulli, 1997. The lateral stiffness of the 
structure was similar in all the cases considered, with smaller 
values for models B and C.  It must be noted that, for the multi-
strut models, the stiffness may significantly change depending 
on the separation between struts.  Figure 2 compares the 
bending moment diagrams obtained from one typical example 
according to the different models used in this study.  Model A 
underestimates the bending moment because the lateral forces 
are primarily resisted by a truss mechanism.  On the other hand, 
Model B leads to larger values than those corresponding to the 
finite element model.  A better approximation is obtained from 
Model C, although some differences arise at the ends of both 
columns. Similar conclusions can be drawn regarding the shear 
forces. The maximum axial forces in the frame members are 
approximately equal in all the models, even though the 
variation of the axial forces along the columns shows some 
discrepancy at the top end of the tension column and at the 
bottom end of the compression column.  
 

FEM
Model A

Model B
Model C

 
Figure 2.  Bending moment diagrams obtained from different 

models . 
 
It can be concluded that the single strut model, despite its 
simplicity, can provide an adequate estimation of the stiffness 
of the infilled frame and the axial forces induced in the frame 
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members by lateral forces.  However, a more refined model, 
Model C, is required in order to obtain realistic values of the 
bending moments and shear forces in the frame.  
 
 
3. FAILURE MODES OF THE MASONRY PANEL 

According to the literature, the most common types of failure 
are, Crisafulli, 1997:  
• shear failure due to debonding of the mortar-brick 

interfaces (shear-friction failure), which can occur 
following a stepped cracking pattern or by horizontal 
sliding along a mortar joint, 

• diagonal tension failure of the masonry units, as a result of 
a combination of compressive and shear stresses in the 
masonry, and  

• crushing of the masonry at the corners due to high 
compressive stresses.  

 
Macro-models, due to their simplicity, cannot represent 
precisely all the different types of failure observed for masonry 
panels. For this reason, a preliminary study should be conducted 
before modelling the structure in order to estimate the expected 
mode of failure of the masonry panel.  This can be achieved by 
applying the failure theory proposed by Mann and Müller 
(1982) or by Crisafulli et al. (1995) and (2002). After this 
preliminary study, the failure of masonry can be adequately 
considered in the model using a proper combination of strut and 
shear springs. 
 
The failure due to crushing of the masonry at the corners is 
uncommon for infilled reinforced concrete frames, although it 
has been observed in infilled steel frames.  In this case, the 
surrounding frame is more flexible and the contact length 
between the panel and the frame is smaller.  This situation can 
be also represented with the triple strut model illustrated in Fig. 
3, in which the central strut is divided into two elements with 
different areas, in order to consider approximately the increase 
of axial stresses occurring in the corners of the panels.  It is 
worth noting that this idea is presented here in a general sense.  
The practical application of this model requires further research 
in order to investigate the values of the area and length of the 
reduced element of the central strut. 
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Figure 3.  Multi-strut model proposed to represent the 
crushing of the masonry at the corners of the 
panel. 

 
 
 

4. PROPOSED MACRO-MODEL 

4.1 General description of the model 
A new macro-model is proposed in this paper in order to 
represent, in a rational but simple way, the effect of masonry 
infill panels. The model is implemented as a 4-node panel 
element which is connected to the frame at the beam-column 
joints.  Internally, the panel element accounts separately for the 
compressive and shear behaviour of the masonry panel using 
two parallel struts and a shear spring in each direction, see Fig. 
4. This configuration allows an adequate consideration of the 
lateral stiffness of the panel and of the strength of masonry 
panel, particularly when a shear failure along mortar joints or 
diagonal tension failure is expected.  Furthermore, the model is 
easy to apply in the analysis of large infilled frame structures.  
The main limitation of the model results from its simplicity, 
since the panel is connected to the beam-column joints of the 
frame it is not able to predict properly the bending moment and 
shear forces in the surrounding frame. 
 
It is assumed in the model that the stiffness of the shear spring, 
ks, is equal to a fraction, γs, of the total stiffness of the masonry 
strut  

 θγ 2cos   

m

mms
ss d

EAk =  (1) 

where Ams is the total area of the equivalent strut (defined by 
several researchers based on experimental and analytical data, 
see Crisafulli, 1997), Em is the elastic modulus of masonry and 
dm is the diagonal length of the masonry panel.  The term cos2 θ 
is introduced in Eq. (1) to express the stiffness in the horizontal 
direction, being θ the inclination of the diagonal of the infill 
panel. The factor γs usually varies from 0.50 to 0.75, according 
to the results obtained by the authors when calibrating the 
model. 
 

shear spring

h z

masonry strut

h z

 
         

 Figure 4. Proposed multi-strut model (only the struts and 
shear spring active in one direction are 
represented). 

 
The hysteretic response of the shear spring is modelled 
following an elasto-plastic rule with variable shear strength 
(Crisafulli, 1997). The shear strength of the spring is controlled 
by a shear-friction mechanisms which can be adequately 
represented by the Mohr-Coulomb criterion.  Therefore, the 
strength is evaluated considering two different stages, namely, 
(i) elastic response before the bond-shear strength is reached, 
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and (ii) sliding, in which the strength depends on the 
compressive force of the struts.  In the latter case, the shear 
strength is limited in order to avoid large values due to high 
axial forces in the struts.  
 
The evaluation of the stiffness of the shear spring considered in 
the model, based on Eq. (1), does not reflect the actual shear 
behaviour of the masonry panel, but represents a practical 
approach which leads to adequate values of the lateral stiffness 
of the infilled frame.  In this way, it is possible to use the 
existing empirical expressions proposed for the calculation of 
the equivalent width of the masonry strut.  Additional 
experimental and analytical research is required in order to 
develop a more rational procedure which will be able to take 
into account the shear response of the infill panel not only in 
terms of strength but also in terms of stiffness. 
 
The axial stiffness of each strut, kai, accounts for the remaining 
fraction (1-γs) of the total stiffness which is assigned to two 
struts with equal area, see Fig. 1 (b):   
 

 
m

tmss
ai d

EAk
  2

   )1( γ−
=  (2) 

where Et is tangent modulus of the masonry defined according 
to an adequate hysteretic model for masonry. This is required in 
order to conduct nonlinear dynamic analyses of infilled frames 
subjected to earthquakes. In the proposed model, the response 
of the axial struts is represented according to a hysteretic stress-
strain relationship developed by Crisafulli, 1997.  The axial 
force and the axial displacement in the strut are related to the 
stress and strain of the masonry according to basic relationships 
of the structural analysis. 
 
The area of the equivalent strut, Ams, can decrease as the lateral 
displacement of the structure, and consequently the axial 
displacement of the strut, increases.  This is due to the reduction 
of the contact length between the panel and the frame, and due 
to the cracking of the masonry infill. It is assumed in the 
proposed model that the area of the equivalent varies as a 
function of the axial displacement ∆a, following the criterion 
illustrated in Fig. 5.  The variation of the strut area Ams is 
introduced in the model to gain generality, even though there is 
insufficient information to estimate the practical values of this 
variation.  According to experimental results reported by 
Decanini and Fantin (1986)  the equivalent width of the strut 
decreases by about 20% to 50% due to cracking of the masonry 
panel.  However, these values were derived under the 
assumption that the modulus Et remains constant, whereas the 
proposed model considers a variable modulus, which decreases 
as the axial compressive strain increases.  The main advantage 
of this approach is that the user can control the variation of the 
stiffness and the axial strength of the masonry strut. 
 
The response in the initial stage is primarily controlled by the 
shear spring and the bending moments and shear forces in the 
frame are similar to those obtained from the triple-strut model 
(Model C, Fig. 1). After the shear strength is reached and 
sliding starts, the mechanisms changes resulting in a significant 
increase of the actions induced in the frame. 
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Figure 5. Variation of the strut area considered in the model. 

 
 
4.2 Formulation of the model 
The practical implementation of the proposed model requires 
the use of several spring elements and beam or beam-column 
elements to represent the masonry panel and the surrounding 
frame.  In order to simplify the application of the proposed 
model, from the user point of view, a 4-node panel element has 
been formulated and implemented in the structural program 
RUAUMOKO (Carr, 2002).  In this way, the user only needs to 
define the characteristics of the masonry infill as a whole 
element, whereas the program evaluates internally the 
properties of the struts and the shear spring.  Fig. 6 illustrates 
the main characteristics of the proposed panel element. 
 
The vertical separation of both struts, hz, varies between z/3 and 
z/2, being z the contact length between the panel and the frame 
(Stafford Smith, 1966): 

 hz
hλ

π
  2

=  (3) 

where h is the storey height,  
 

 4   
4

sin    
mcc

m
h  h I E

tEh θ
λ =  (4) 

 
t is the masonry thickness, Ec is the elastic modulus of the 
concrete, Ic is moment of inertia of the columns and hm is the 
height of the masonry panel. 
 
Three different sets of nodes are considered for the 
development of the panel element, namely, external nodes, 
internal nodes and dummy nodes.  The external nodes are those 
connected to the principal structure, whereas the internal nodes 
are defined by a horizontal and a vertical offset, xoi and yoi 
respectively, measured from the external node i. This is 
intended to represent the reduction of the dimensions of the 
panel due to the depth of the frame members.   
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Figure 6.  Proposed 4-node panel element. 

 
Three degrees of freedom, the translations u and v and the 
rotation θ, are considered in each of the external and internal 
nodes.  Four dummy nodes, with 2 translational degrees of 
freedom per node, are required to define the end of the strut 
members which is not connected to the corners of the panel. 
The formulation of the stiffness matrix and the nodal forces of 
the panel element is conducted considering the equilibrium and 
compatibility equations between the forces and displacement of 
the different coordinates systems.  These relationships, derived 
from the principle of Virtual Displacement (Livesly,1975), 
indicate that if a transformation matrix [Q] relates the 
displacements {u}A and {u}B expressed in two different systems 
of rectangular coordinates, the transpose of this matrix, [Q]T, 
also transforms the nodal forces {F}B to {F}A.  It can be shown 
that the stiffness matrix in the coordinates system “B” is equal 
to the double product of the matrix [Q] applied to the stiffness 
matrix in the coordinates system “A”: 
     
 { } [ ] { } { } [ ] { }ABBA FQFuQu       ,   T==  (5a) 
 
 [ ] [ ] [ ] [ ]      A

T QKQK B =  (5b) 
 
These relationships are successively applied to transform the 
structural parameters of each strut and spring of the model to 
the global system of coordinates, associated with the external 
nodes of the panel element.  

4.3 Axial behaviour of the struts 
Eq. (2) gives the axial stiffness of each strut in local coordinates 
(referred to the axial displacement). Consequently, a series of 
transformations are required to obtain the stiffness matrix in 
global coordinates and related to the displacements of the 
external nodes of the panel element. This process is developed 
according to the structural concepts presented in Section 4.2, 
and comprises three transformations, which are described in the 
following paragraphs. Each transformation will be referred 
using the sub-index A, B and C. 
 
The first transformation required in the analysis relates the axial 
displacement of the strut, ∆a, to the horizontal and vertical 
displacements, u and v, at the ends j and k of the strut:  
 

[ ]
⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=∆

k

k

j

j

Aa

v
u
v
u

Q    (6) 

 
where the matrix [Q]A is defined as a function of the inclination 
of the strut referred to the global system, θi, see Fig. 6 (a): 

 
[ ] [ ]iiiiAQ θθθθ sincossincos −−=  (7) 

 
The second transformation relates the displacements u and v at 
both ends of the strut to the global displacements, u, v and ϕ , at 
the internal nodes of the panel element.  It must be noted that 
each strut has one end connected to a dummy node and the 
other end connected directly to an internal node (see Fig. 7). 
Therefore the second transformation needs to be formulated in 
two steps.  The first step considers the relationship between the 
displacements at the internal dummy node j and the adjacent 
internal nodes m and n:   
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where the sub-indexes D and I refers to dummy and internal 
nodes, respectively.  The matrix [Q]ID (2x6) can be formulated 
using interpolation functions  which relates the displacements u 
and v corresponding to a point located at a distance s from the 
internal node.  It is found (Crisafulli, 1997) that the terms of this 
matrix are: 
 

Q(1,1)ID = Q1 cos2 θE + Q5 sen2 θE  
Q(1,2)ID = Q(2,1)ID = (Q1 - Q5) cos θE   sen θE  
Q(1,3)ID = Q2 cos θE   
Q(1,4)ID = Q3  cos2 θE + Q6 sen2 θE  
Q(1,5)ID = Q(2,4)ID = (Q3 - Q6) cos θE   sen θE  (9) 
Q(1,6)ID = Q4 cos θE   
Q(2,2)ID = Q1 sin2 θE + Q5 cos2 θE  
Q(2,3)ID = Q2 sin θE   
Q(2,5)ID = Q3 sin2 θE + Q6 cos2 θE  
Q(2,6)ID = Q4 sin θE   

ϕ 

θ1 θ2 
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where θE is the inclination of the edge (see Fig. 7), 

Q1 = 1 – 3 χ2 + 2 χ3 
Q2 = (χ – 2 χ2 + χ3) LE 
Q3 = 3 χ2 - 2 χ3 (10) 
Q4 = (– χ2 + χ3) LE 
Q5 = 1 – χ 
Q5 =  χ 

LE is the length of the edge and χ = s/LE. 
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Figure 7. Detail of one edge of the panel element. 

 
At the other end (node k) the strut is directly connected to an 
internal node and no special calculations are required for the 
second step in this transformation. Based on this consideration, 
and taking into account Eq. (8), the relationship between the 
displacement at u and v at the end of the strut and the global 
displacements at the three internal nodes (represented by sub-
index I) related to the strut is: 
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where the matrix  [Q]B includes the transformation defined by 
Eq. (11): 
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The final transformation relates the displacements of the 
internal nodes to the displacement of the external nodes.  This 
relationship for one node is given by: 
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where the matrix [Q]EI is a function of the horizontal and 
vertical offsets, xom and yom, corresponding to node m, see Fig. 
6 (b): 
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The transformation indicated by Eq. (14) needs to be applied 
three times, since each strut is related to three external nodes.  
For example, the strut 1 in Fig. 6(a) contributes to the external 
nodes 1, 2 and 4. Therefore, the complete transformation is: 
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where the transformation matrix is: 
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The complete procedure for the formulation of the stiffness 
matrix can be summarized in the following steps: 
   
a) Select the active struts in the model (1 and 3, or 2 and 4) 

depending on the direction of the loading. 
 
b) Evaluate the axial stiffness of the strut i, kai, using Eq. (2). 
 
c) Calculate the stiffness matrix referred to the global 

displacements u and v at both ends of the strut, according to 
Eqs. (5b) and (7): 

 
 [ ] [ ] [ ]Aai

T
Ai QkQK             A =  (17) 

          (4 x 4)           (4 x 1)              (1 x 4) 
 
d) Calculate the stiffness matrix of the strut referred to the 

three internal nodes (with three degrees of freedom at each 

θE 

⎥
⎦

⎤
⎢
⎣

⎡                        IDQ
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node, u, v and ϕ), considering Eqs. (5b) and (12) 
 [ ] [ ] [ ] [ ]Bi

T
Bi QKQK                     AB =  (18) 

          (9 x 9)         (9 x 4)          (4 x 4)          (4 x 9) 
 
e) Calculate the stiffness matrix of the strut referred to the 

three external nodes (with three degrees of freedom at each 
node, u, v and ϕ), based on Eqs. (5b) and (16) 

 [ ] [ ] [ ] [ ]Ci
T
Ci QKQK                        BC =  (18) 

          (9 x 9)             (9 x 9)         (9 x 9)           (9 x 9) 
 
f) Assemble the terms of the matrix [Ki]C  into the matrix of 

the panel element, [Kp], (12 x 12), taking into account the 
nodes related to the strut. In the case of the strut 1, which is 
related to the external nodes 1, 2 and 4, the contribution of 
this strut to the total stiffness matrix is: 
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⎥
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⎦

⎤

⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

***000******
***000******
***000******
000000000000
000000000000
000000000000
***000******
***000******
***000******
***000******
***000******
***000******

pK  (19) 

 
 

where the symbol * indicates a nonzero term in the matrix, 
which is obtained from matrix [Ki]C. 

 
g) Repeat the same process for the second strut in the model in 

order to complete the stiffness matrix of the panel element.  
 
A similar process of successive transformations should be 
applied in order to assemble the vector of nodal forces (12 
terms), based on Eq. (5a). 
 
4.4 Shear behaviour of the spring 
The consideration of the shear behaviour of the panel element is 
simpler, since only one spring element is used.  This spring is 
connected to two diagonally opposite internal nodes depending 
on the direction of the shear force, see Fig. 6(b).  It is worth 
noting that the implementation of the proposed model in a panel 
element allows the calculation of the axial forces in the struts to 
be used for evaluating the strength of the shear spring.  This 
inter-relationship between different members is not possible to 
be considered in most of the existing programs for structural 
analysis. 
 
The stiffness of the spring and the shear force are associated 
with the horizontal displacement, u, of the two diagonally 
opposite nodes (nodes 1and 3 or 2 and 4, depending on the 
loading direction).  Consequently, the stiffness matrix of the 
shear spring related to the displacements of the internal nodes n 
and k is: 
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kk

K  (20) 

 
where the term ks is defined by Eq. (1).  The only 
transformation required in this case is that given by Eqs. (13) 
and (14), which relate the internal nodes to the external nodes: 
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where the transformation matrix is: 
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Based on Eq. (5b), the stiffness matrix of the shear spring 
related to the external to two external nodes of the panel is: 
 [ ] [ ] [ ] [ ]Ds

T
Ds QKQK                        D =  (23) 

         (6 x 6)             (6 x 6)         (6 x 6)           (6 x 6) 
 
Finally, the terms of the matrix [Ks]D  need to be added to the 
total stiffness matrix [Kp] considering that the shear spring is 
connected to nodes 1and 3 or 2 and 4, depending on the loading 
direction.   
 
 

5. CONSIDERATIONS FOR 3-D MODELS 

In recent years there has been a significant increase in both the 
power of computers and the capacity of the software available 
for structural analysis. As a result, today it is possible to 
perform the nonlinear analysis of complete structures using 3D 
models. 
 
The strut model (single or multi-strut) has been developed and 
used to evaluate the in-plane behaviour of masonry infills, 
however, the out-of-plane response cannot be adequately 
represented because the infill behaves as an unreinforced slab.  
When implementing the proposed model in a 3-D computer 
program the following considerations should be taken into 
account. The masonry panel in the model should be a plane 
panel (in the undeformed state). This means than the four nodes 
of the panel should be in a plane.   If the panel is not plane, 
other effects can be important (shell or membrane behavior), 
which are not considered in the model presented here. When the 
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direction normal to the panel coincides with one of the global 
axes (e.g. the axis Z), the solution is simple.  It must be 
considered that the stiffness matrix of the panel (12 x 12) 
contributes only to the 12 global degrees of freedom in the 
plane of the panel (XY).  In this case, the displacements along Z 
and the rotations about X and Y should be ignored, because the 
model is not able to represent the out-of-plane behaviour. 
 
A more precise representation of the spatial behaviour of the 
infill frame will require the consideration of the out of plane 
response. For example, the panel can be considered as a “slab”, 
but this behaviour probably degrades rapidly as the 
displacement increases. This complex representation of the 
infill panel exceeds the scope of the strut model, which is 
applied as a simplified representation.  For more refined 
modeling, the use of 2-D or 3-D nonlinear finite elements to 
represent the entire panel could be a proper solution. 
 
 

6. NUMERICAL EXAMPLES 

The proposed model was applied to represent the response of a 
infilled frame tested at the University of Canterbury under 
vertical and cyclic lateral loading, in which a shear failure 
occurred (Crisafulli, 1997).   Using the computer program 
RUAUMOKO (Carr, 2000), the lateral and vertical forces were 
applied in successive increments, in which the mechanical 
properties of the structure were updated according to the strains 
and displacements induced in the different components of the 
model in the previous step.  The separation of the struts was 
adopted as hz = 0.23 m, which is equivalent to z/2.  The 
properties of the model associated with the axial cyclic 
behaviour of masonry were adopted from tests of the materials.  
 
Figure 8 compares experimental and analytical results in the 
range of small displacements in order to observe clearly the 
response in the initial stage.  The force level at which shear 
cracking occurs according to the analytical procedure, 59.8 kN, 
agrees very well with the measured value equal to 65.0 kN.  
The overall theoretical response is compared in Fig. 9 with the 
strength envelope measured during the test, indicating that the 
proposed model can estimate the lateral resistance of the infilled 
frame and the strength degradation observed for large 
displacements.  In addition, the failure mechanism is properly 
represented, being the analytical model capable of describing 
the shear cracking of the masonry panel and the yielding of the 
tension column of the frame. 
 
The proposed model has been also implemented in the program 
SesimiStruct (SesimiSoft, 2006) and numerical results were 
compared to experimental data by Smyrou et al. (2006), 
showing the accuracy of the model to evaluate the nonlinear 
response of the structure.  Furthermore, they conducted an 
interesting sensitivity analysis to evaluate the relative 
importance of the parameters used in the model to represent the 
cyclic response of masonry. 
 
 

7. CONCLUSIONS 

This paper describes a refined macroscopic model for infilled 
frames, in which the principal premises are the rational 
consideration of the particular characteristics of masonry and 
the adequate representation of the hysteretic response.   
 

Since shear failure of the masonry (shear friction and diagonal 
tension failure) is the most common type of failure observed in 
a masonry panel, a multi-spring model is developed to represent 
specifically this situation.  The model accounts separately for 
the compressive and shear behaviour of masonry using a double 
truss mechanism and a shear spring in each direction.  The 
proposed configuration allows the calculation of the axial forces 
in the strut to be used for the evaluation of the shear strength of 
the masonry panel. This concept is implemented in a 4-node 
panel element which is being incorporated in the computer 
program RUAUMOKO (Carr, 2000). 
 
The comparisons between experimental data obtained by the 
authors and other researchers and analytical results indicate that 
the cyclic response of infilled frames can be properly 
represented by the proposed model.  This, however, requires a 
fine calibration of the model, which is usually achieved after 
several adjustments, particularly the parameter defining the 
hysteretic behaviour of masonry. The need of these adjustments 
indicates that the detail prediction of the real cyclic response of 
infilled frames is still a difficult task. 
 
Recommendations are also given for the analysis of infilled 
frames when failure due to crushing of the corners is expected 
in the masonry panels.  Further research is required in order to 
implement this model. 
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Figure 8. Comparison between experimental and analytical 

data in the range of small displacements. 
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