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PREDICTION OF POST-ELASTIC SEISMIC RESPONSE OF STRUCTURES 
BY A MODE SUPERPOSTION TECHNIQUE 

A.G.Gillies* and R. Shepherd** 

SYNOPSIS: 

For the determination of the dynamic response of a structural 
system to earthquake ground motion the mode superposition technique 
offers an alternative approach to the well established direct integration 
method. Whereas the principle of modal superposition is encountered 
commonly in elastic analyses, the response of a yielding structure 
ispredicted almost universally by direct integration of the 
equation of motion. 

In this paper the principles of modal superposition are 
extended into the post-elastic domain. Among the advantages 
which accrue from the modal based transformation are a potential 
reduction in the number of dynamic degrees-of-freedom considered 
in the solution, and a new insight into the structure response 
provided by the instantaneous dynamic properties of the structure. 

INTRODUCTION: 

The development of numerical methods 
for the non-linear vibration response 
analysis of structures has attracted much 
attention. The almost universally accepted 
approach, utilizing the finite element 
method, has been to cast the second order 
equation of dynamic equilibrium into 
incremental form and solve for the dis­
placements using direct step-by-step 
integration techniques. Efficient computer 
codes have been derived on the basis of this 
model and the results have been successfully 
interpreted in the design situation. The 
step-by-step direct integration method is 
well documented (1 - 7 ) . 

Mode superposition is a widely utilized 
approach in determining the dynamic response 
analysis of linear systems (e.g. Clough (8), 
Carmignani et al (9), Bathe and Wilson (10)). 
Although often used in linear analysis 
the method has seldom been applied in non­
linear problems. Most of the arguments 
presented for discarding the technique are 
related to the level of computer effort 
required to solve the free vibration 
eigenproblem. The frequencies and mode 
shapes (eigenvalues and eigenvectors) 
are fundamental parameters in the mode 
superposition approach. 

In linear response analysis, the 
mode shapes and frequencies need to be 
determined once only as their functional 
dependence on'the mass and stiffness 
matrices is non-varying with time. The 
response characteristics are determined 
from the solution of a set of uncoupled 
(with appropriate bounds on the damping 
representation) generalized equations. 

In contrast, the non-linear problem 
may be idealized as the solution of a 
series of linear problems. Morris (11) 
described the application of modal super­
position methods to four simplified 
problems , three of which were geometri ca LIy 
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non-linear. The fourth problem considered 
the elasto-plastic analysis of a single-
storey single-bay three-dimensional frame. 
The results indicated the validity of the 
approach. However, the example analysed 
was too simplistic to highlight the 
computation advantages associated with 
this technique. Nickell (12) also demon­
strated the application of the principle 
of local mode superposition but again 
the examples were somewhat narrow in 
scope in that they were restricted to 
geometrically non-linear problems. The 
comment was made that no difficulty could 
be expected in analysing problems of an 
elasto-plastic nature. Clough (8) 
suggested that it would often be worthwhile 
to evaluate the response of a complex 
structure by direct step-by-step inte­
gration of a limited set of normal-coordinate 
equations of motion even though the 
equations could become coupled as soon as 
any significant non-linearity developed 
in the response. Stricklin and Haisler (13) 
presented the rudiments of the modal 
analysis formulation and recommended the 
approach using the initial elastic eigen­
vectors as the basis for the transformation 
matrix. An alternative procedure 
utilizes the incremental formulation and 
computes the eigenvectors as a function of 
the instantaneous displacements. Stricklin 
concluded this alternative approach 
offered little promise except for studies 
of vibrations about a deformed position 
as found in panel flutter. 

Nakao and Takano (14) described the 
analysis by mode superposition of elasto-
plastic frame structures. The examples 
considered again were very simplistic -
however, they concluded the method was 
effective for analysing the elasto-plastic 
seismic response of framed structures. 

Bathe (15) recognized the generality 
of the mode superposition formulation and 
suggested the approach when the response 
may be modelled by relatively few 
coordinates. 

Little research effort has been 
directed towards the application of modal 
superposition techniques to the dynamic 
time-history response determination of 
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typical multi-storey frame structures 
subjected to earthquake ground motion 
when the member deformations are extended 
beyond the elastic limit. 

In this paper, the solution of the 
non-linear structural vibration problem by 
mode superpositon is outlined. In the 
theory presented the mass matrix, M, is 
assumed to be constant. A lumped mass 
rather than a consistent mass formulation 
is adopted. The concepts developed apply 
to a displacement dependent mass matrix, 
however the lumped mass representation 
enables some economy in the solution of 
the set of dynamic equilibrium equations. 
The stiffness matrix, K, is assumed to be 
displacement dependent, however geometric 
non-linearity effects have been neglected. 
Since the eigenproblem is a function of. 
the stiffness matrix, as well as the mass 
matrix, a change in the stiffness properties 
implies a change also in the corresponding 
eigenproperties. In the step-by-step 
response prediction, during periods of 
material yielding, the eigenproblem may 
require solution many times. An efficient 
algorithm for the eigenproblem solution 
is fundamental to the successful implement­
ations ofthe proposed solution strategy. 

There is one fundamental difference 
between the solution of the dynamic 
equilibrium equations by direct integration 
and by mode super-position. In direct 
integration, the equations of dynamic 
equilibrium are integrated directly in 
the original finite element basis whereas 
before solving the equilibrium equations, 
the mode superposition method requires 
a transformation to a new basis. A large 
proportion of the computational effort 
in the mode superposition approach is 
directed towards the derivation of a set 
of vectors which together form a suitable 
transformation basis. Generally, the 
eigenvectors are the most suitable set of 
vectors, however, as discussed in detail 
subsequently, an alternative set of vectors 
may sometimes be computationally more 
efficient. 

premultiplying by T , the new form of 
the equilibrium statement is: 

T MTy T CTy T KTy = T F(t) (3) 

The displacements derived in the 
new system may be related to those 
in the original system by means of 
equation (2). 

So far no comment has been made on 
the form of the matrix (T). There is 
a limitless choice of coordinate 
transformations which could be applied 
as in equation (2). The effectiveness 
of the mode superposition "approach 
lies in the choice of the column 
vectors for the transformation matrix, T. 
The eigenvectors corresponding to the 
n-free vibration modes of the above 
system provide an eminently suitable 
basis. The matrix T is constructed as 
a square matrix of order n with the 
columns comprising the n individual 
eigenvectors. A typical element t.. 
represents the .th" component of the 
jtn eigenvector^" 

For linear elastic studies, rewriting 
the transformation matrix in more familiar 
form as: 

(T) = ($) 
$ $ $ ( 1 2 n) , a square matrix of 

order n 

$1 is an n-dimensional vector 
t h 

corresponding to the i mode shape 
leads to an equation of the form: 

(4) 

$TC<£y + $ Tk$y = $ TF (t) $ M$y + 

The orthonomality properties: 

$ TM$ = I 

and 
-T. 

(5) 

(6a) 

(6b) 

LINEAR MODE SUPERPOSITION: 

The equation of dynamic equilibrium 
in the finite element coordinate system 
may be written in terms of a structural 
mass matrix M, a damping matrix C, and a 
stiffness matrix K as 

Mx + Cx Kx F(t) (1) 

The displacements, x, and related 
velocities, x, and accelerations, x, 
may be expressed in terms of a new coord­
inate system by means of a transformation 
of the form: 
x = (T)y (2) 
{x} is an n-dimensional vector 

of displacements in the finite 
element coordinate system 

(T) is a transformation matrix of 
of order n x p 

{x} is a p-dimensional vector of 
displacements in the generalized 
coordinate system. 

By substituting for x, the equation 
of equilibrium may also be transformed 
to the new coordinate system and, after 

- e ± f i = 1, ..., n a unit diagonal 
matrix 

ft = a) . i = 1, n a diagonal 

matrix of natural frequencies squared 

I y + <£>TC$y + Q 2 y = <£>TF(t) (7) 

If the viscous damping matrix 
representation, C, is chosen such that 
the same transformation as uncouples the 
mass and stiffness matrices also uncouples 
the damping matrix, the n equations of 
motion become fully uncoupled and their 
solutions may be calculated independently. 

Damping which satisfies the above 
criteria is commonly referred to as 
orthogonal, classical, or proportional 
damping. The final form of the equilibrium 
expression is then set of n equations 
represented by: 

J 1 l i J x 

where 

a). y. F(t) (8) 
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represents the damping ratio for mode 1 

is the natural frequency of mode 1 

Following the transformation to an 
uncoupled system, the displacement response 
may be computed by a variety of techniques 
including the direct integration approach. 
One immediate benefit resulting from the 
uncoupled system is the matrix manipulation 
steps involved in the solution of each 
of the n equations are reduced to trivial 
calculations. 

The selection of an appropriate 
integrations time step length is inherent 
in the development of the direct integrat­
ion method. A time step formula, based 
on the highest participating frequency, (6) 
is commonly adopted: 

0.01 < =^ <_ 0.1 (9) 

where 

t is the integration time-step length 
(seconds) 

T is the period of the highest frequency 
p mode assumed participating (seconds). 

The cost of solution using direct 
integration may be reduced by using a 
varying time step related to the mode 
frequency. A coarse step may be adequate 
for the first few modes (or low frequency 
modes) and the step-length further sub­
divided for the higher modes. The overall 
response is then approximated by super­
imposing the solutions when the time 
intervals coincide. The appropriate 
length of time step is now related to the 
accuracy with which it is desired to track 
the selected earthquake ground motion record 
in each coordinate. 

When transformed to generalized form 
as in equation (8) the equations may be 
solved using an integration operator based 
on the Duhamel integral. The advantage 
of the Duhamel-based operator is that it 
is precise - it has no artificial damping 
or phase velocity error. A precise 
operator based on Duhamel 1s integral has 
been presented by Dunham, Nickell and 
Stickler (2). A particularly effective 
recursive relationship, based on the approach 
due to Cronin (16) , has been presented by 
Dempsey and Irvine (17) . 

PROBLEM CONDENSATION: 

Benefits which accrue in rewriting 
the equations of dynamic equilibrium 
in terms of generalized coordinates result 
in the first instance from the simplification 
of the matrix operations in the solution 
schemes and in the second from the 
increase in scope in selection of the 
particular numerical integration scheme. 
If these were the only advantages, mode 
superposition schemes in general would . 
be computationally inferior to the efficient 
direct integration schemes when applied to 
non-linear analysis. 

When the contribution of each uncoupled 
system to the gross response of the structure 
is examined, a major potential of the 
modal transformation approach - a reduction 

in the number-of-degrees participating 
In the response - is identified. For the 
frame structure typical of a muIti-storey 
building, the response is almost fully 
described by the first few lateral 
displacement modes. 

For the structures considered in this 
study the first p modes are assumed 
significant in contributing to the response. 
The transformation matrix,. (¥) , is a 
matrix of order n x p, the columns 
comprising the first p eigenvectors. 
The generalized equation of dynamic 
equilibrium as in equation (7) may 
be rewritten: 

Iy + # C $ y + TTZy = i>TF(t) (10) 

$ = ($^ $ 2 . . . $ ) , a transformation 
^ matrix of order n x p 

I = e., i = 1, ... , p, a unit diagonal 
matrix 

—2 2 
Q = OJ . . , i = 1, ... , p, a diagonal 

matrix of frequencies squared 
The displacement response is 

computed by solving p equations rather 
than n as in the complete solution. The 
efficiency of the reduced scheme is a 
function of the ratio of p to n - the 
greater the difference the more attractive 
will be the mode superposition approach. 

In the discussion thus far it is 
assumed that the transformation matrix, 
(T) , is constructed from the first p 
eigenvectors of the mathematical model 
of the structure. The transformation 
matrix is then written as ($). The 
only mathematical restriction placed on 
the selection of the transformation 
matrix is that the order of the matrix 
must be compatible with that of the 
mass, damping and stiffness matrices 
to ensure the triple matrix products 
are valid. A poor choice results in 
an inadequate representation of the 
distribution of inertia loads. A 
large number of vectors would be necessary 
to achieve an accurate preduction of the 
dynamic response of the structure. 

Whilst it is desirable to use the 
eigenvectors as a basis for the trans­
formations of the equations of motion, 
they do not always provide the most 
efficient basis. If a set of vectors 
are available which, although not the 
exact eigenvectors for the structural 
system, nevertheless are a close approx­
imation to the true eigenvectors, then 
these vectors may provide a satisfactory 
basis for the transformation matrix. It 
is logical that any set of displaced 
shapes which approximate the correct mode 
shapes will provide a reasonable prediction 
of the distribution of the inertia loads. 
The set of vectors so derived retain 
one property of the eigenvector basis 
as mentioned previously. The inertia 
loading may be adequately represented 
by a small number of vectors and thus the 
order of the generalized, set of equations 
is kept to a minimum. 

However the vectors generally do not 
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satisfy the orthonornality relationships 
of equations (6a) and (6b). Since the 
system of transformed equations are no 
longer diagonalized by the selected basis, 
the system of equations are coupled. The 
numerical effort required to solve the 
transformed set of equations is increased 
when compared with the uncoupled system. 
The choice of integration scheme suitable 
for computing the displacement response is 
restricted since some schemes are specific­
ally developed for an uncoupled set of 
equations. The response may still be 
determined efficiently since the order of 
the generalized set of equations, p, is 
less than n, the order of the structural 
system as initially described. 

The situation where an approximate set 
of eigenvectors is a more efficient 
transformation basis than the exact 
eigenvectors is outlined in the following 
section. 

NON-LINEAR SYSTEMS: 

The principles presented above may 
be applied equally to the solution of 
non-linear problems. The solution may 
be considered as equivalent to the 
solution of a series of linear problems. 
Two alternative formulations are discussed. 

The equation of dynamic equilibrium 
is written in incremental form, to give: 

Ay + C* Ay + K * Ay = T AF(t) (14) 

MAx + C f c Ax + K t Ax AF (t) (11) 

whe re C f c = damping matrix at time t 

and tangent stiffness matrix at time t 

The lumped mass approach is assumed 
in the formation of the mass matrix (M), 
hence (M) is considered time invariant. 
The modal transformation to be outlined 
applied equally to the instance where the 
mass matrix is also time dependent. Such 
a case may arise where the "consistent" 
mass representation is adopted. 

The first solution approach is to 
use the same basis for the transformation 
matrix as is used in linear elastic 
analysis. The columns in matrix (T) 
comprise the first p eigenvectors of the 
undamped elastic vibration problem: 

The p resulting equations no longer 
correspond to uncoupled generalized 
coordinate representations. A high 
level of coupling may be displayed 
in the matrix representation - the 
generalized matrices K* and C* are 
full rather than diagonal as in the 
elastic case. The solution of the 
coupled set of equations is not 
intractable and may be efficiently 
computed by direct integration procedures. 
Although an uncoupled set of equations 
is not derived, the order of the system 
is reduced from n to p, enabling a 
reduction in computer effort in solving 
for the displacements. 

The reason for considering a 
mathematically approximate eigenvector w 

basis is that the eigenproblem, which 
represents a high proportion of the 
computer demand, is solved once only. 
Where considerable local yielding is 
incurred the elastic configuration may 
provide a very poor representation of 
the distribution of inertia forces. 

An alternative solution is derived 
by solving the instantaneous eigenproblem 
and reformulating the transformation 
matrix (Tfc) for each change in stiffness. 

) , t l ^ t 2 . . . r t p 

where 
the first p eigenvectors of the problem 

(15) 

f>t̂  are column vectors comprising 

K, X t M 

The repeated solution of the eigen­
problem considerably increases the 
computer demand. Some economy should 
be possible from knowledge of the 
eigenproperties immediately prior to 
the current stiffness state. In this 
regard, the subspace iteration algorithm 
(10) is a suitable choice of algorithm 
since the previously calculated eigenvectors 
may be used as a first approximation to 
the solution of the current eigenproblem. 
For small variations in stiffness, the 
eigensolution should converge in few 
cycles. 

J (12) 

The basis will be acceptable provided 
the nqn-linearities are confined to a 
local section of the structure such that 
the displaced configuration, allowing 
for yielding of members, resembles the 
elastic displaced shape; on substituting 

T TMT Ay + T T C t T Ay + T^K^TAy = T T AF(t)(13) 

defining 

C* T 
T - L C ^ T 

K * = T K t T 

and recognizing 

The transformed equation of equil­
ibrium is now given by: 

T^MT t Ay + T^C t.T t Ay + T^K^T^. Ay = T^ AF ( 

defining 
m 

T C T 
1 t u t 1 t 

and K * = T T K t T t = 

where 

wtLi 1, 2, 

(16) 

I = T MT 

leads to: 
and a) • • represents the instantaneous 

th 
natural frequency of the i mode again 
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I E T^MT, t t 

hence 

Ay + C* Ay + K* Ay = AF(t) (17) 

The transformed set of equations 
represented by expression (17) may be 
coupled or uncoupled depending on the form 
of the damping matrix C*. Viscous 
damping effects are modelled by a 
Rayleigh-type representation (18,19) 
which relies on three parameters for its 
description. 

C t = a M + B K t + 3 Q K Q (18) 

K t = current tangent stiffness matrix 

K Q = original elastic stiffness matrix 

If 3 q is specified equal to zero, the 
instantaneous eigenvectors will be 
orthogonal to C f c and thus: 

T ^ C t T T = (2(A)ti ei) (19) 

A series of p uncoupled equations 
remain for solution. During yield 
excursions, (K^) may be very low in 
comparison to (K ). The damping 
represented by ° 3 Q K q type is that 
it retains a high value throughout 
yielding phases. Damping of the former 
type may lead to numerical instabilities 
in the solution phase. The damping 
matrix C* is not generally of uncoupled 
form when represented by equation (18). 
An uncoupled set of equations is desirable 
to simplify the solution procedure. 
With a low level of coupling it may be 
acceptable to neglect the off-diagonal 
terms in C*. An estimate of the error 
associated with diagonalization has 
been presented by Warburton and Soni(20). 
From a study of several simple multi 
degree-of-freedom systems subjected to 
harmonic, random, or aperiodic excitation 
a limiting condition for the modal damping 
ratio of the dominant mode or modes (more 
than one mode must be considered for 
structures with closely spaced antural 
frequencies) was proposed in terms of 
natural frequencies and the elements 
c.. of (C*) . For the r t h mode the 

1 3 t 
relationship was written in the form: 

e r <_D r (20) 

where 

. > 2 

c w r rr - 1 
2C 

L ^ 
min s 

C corresponds to r diagonal element 
r r in (C*) 

C r s corresponds to the element in the 
r t h row of the s t h column of (C*) 

u>r, a>g correspond to the natural frequency 

of the r and s modes. 

The minimum of the expression [. .. ] 
with respect to s is taken over the range 
s = 1, 2, 3 , . . . , r-1, r+1, .. . . n. 

For the maximum errors in the major 
response quantities to be of the order 
of 10 per cent e was chosen as 0.05. 

The alternative approach is to use 
a direct integration procedure and include 
the coupled matrix (C*). The analyst is 
required to select the number of modal 
coordinates which will adequately represent 
the coupled, damped response. Studies 
indicate that this number is similar to 
the number required in a standard mode 
superposition analysis where no modal 
coupling exists (21). 

In the preceding discussion two 
alternative approaches for the solution 
of the dynamic equilibrium equations by 
mode superposition are presented. The. 
first uses a transformation basis derived 
from the initial undamped eigenvectors 
of the structural system. The second 
uses a time varying set of eigenvectors 
derived from the current stiffness proper­
ties of the system allowing for material 
yielding. This second approach requires 
the eigenproblem to be resolved each time 
the stiffness characteristics of one, or 
more, elements are altered. 

An engineering approach suggests a 
third alternative could offer the most 
computationally efficient solution. As 
has been stated previously an approximate 
set of eigenvectors can provide a 
mathematically acceptable transformation 
basis. The third approach establishes 
a transformation matrix using the initial 
undamped elastic structure configuration 
to derive the eigenvector basis. The 
step-by-step integration of the dynamic 
equilibrium equations is initiated 
incorporating this basis. During the 
integration, depending on the component 
element yield strength compared with the 
intensity of the earthquake ground motion, 
at the end of a particular time increment 
some element forces may reach their yield 
limit. The stiffness matrix is modified 
to account for the change in element 
properties. Providing that yield is 
restricted to a local region the influence 
of the local yielding may be considered 
insignificant when compared with the 
overall stiffness characteristics of the 
system. In this case the set of 
eigenvectors derived from the initial 
structure configuration still provides 
an accurate description of the distribution 
of inertia forces in the structure. The 
initial transformation basis 'is retained 
for the subsequent time increments, leading 
to the set of equations: 

T o M T o A ^ + T o C t T o A ^ + T o K t T o = T o A F ( t ) 

(21) 

(T Q) is the transformation matrix of order 
n x p derived from the eigenproblem 
K <£> =M$A o 
( K ) is the tangent stiffness matrix at time -t 
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(K ) is the initial elastic structure 
° stiff matrix 

The generalized stiffness matrix 
(T^K tT Q) is a full matrix of order, 
p, because the eigenvector basis is not 
orthogonal to (K t) when 

t f o 

The generalized damping matrix (C t Q) is 
a full matrix also. 

The transformed set of equations in 
(21) may be solved by direct integration. 
A further simplification can be introduced 
to the solution if the assumption is made 
that the influence of the off-diagonal 
coupling terms is insignificant and the 
system is solved as an uncoupled set of 
equations. 

When the system of generalized 
equations exhibits strong coupling, 
signified by large off-diagonal terms 
in the generalized stiffness matrix, 
then the eigenproblem is resolved and a 
new basis is generated. The generalized 
equation of equilibrium is then written 
as: 

T^MT t Ay + T ^ C t T t Ay + T t K t T t A y = T t A F ( t ) 

(22) 

(T̂ _) is the transformation matrix of order 
n x p derived from the eigenproblem 

K t § = M M 

(K t) is the tangent stiffness matrix at 
time t 

A byproduct of the scheme whereby 
the solution of the instantaneous eigen­
problem is considered is that the analyst 
now has access to the instantaneous 
frequencies and mode shapes. The 
instantaneous periods are of interest 
because they represent the dynamic 
effects resulting from fluctuations in 
the tangent stiffness during periods of 
strong shaking. 

Studies (22) have indicated there 
does not seem to be any simple criterion 
by which the earthquake damage potential 
may be correlated to a particular 
structure configuration. These studies 
have been restricted to displacement 
related comparisons associated with a 
range of earthquake ground motion records. 
It would be advantageous to attempt a 
correlation on a dynamic basis. Utilizing 
the above calculated values, the structure 
instantaneous frequency spectrum can be 
compared with the earthquake ground motion 
spectra. Resulting from these studies, 
the sensitivity of a structure to a 
particular earthquake motion may be 
clarified. 

The solution strategies discussed in 
this paper have been incorporated into 
a general three-dimensional frame analysis 
computer code. In Table 1 the program 
structure is demonstrated in block form. 
For a more complete description the 
reader is directed to the source document(30). 

EXAMPLE PROBLEM: 

To demonstrate the implementation of 
the mode superposition scheme, and to 
enable a comparison to be made with the 
results preducted by direct integration, 
the analysis of a reinforced concrete 
frame structure is now presented. The 
test structure was derived from the 
proportions and strength levels of the 
six-storey plane frame analysed by 
Jury (29). The frame has been designed 
to comply with the earthquake lateral 
loading provisions of the current New 
Zealand Loadings Code (28). The frame 
geometry is shown in Figure 1, and other 
relevant parameters used in the dynamic 
analysis are presented in Table 2. The 
lumped modal masses and equivalent gravity 
loads are given in Table 3. 

The columns were assumed to have no 
limit to their elastic characteristics,' 
yielding being thus confined to the ends of 
the beams. This is in accordance with 
the 1strong column-weak beam' design 
philosophy promoted by Code recommendations. 
Prior to the non-linear analyses, the 
structure was analysed elastically to 
evaluate the individual mode contributions. 
The displacement response predicted by 
the alternative direct integration scheme, 
which included all the dynamic degrees-of-
freedom, served as a benchmark for the 
comparisons. 

The structure was subjected to the 
first five seconds of the North-South 
component of the El Centro earthquake, 
18 May, 1940. 

The undamped, free vibration, lateral 
displacement profiles of the first six 
modes of the test structure are shown in 
Figure 2. 

Figure 3 depicts the elastic lateral 
displacement time-history of level 6 of 
the structure for two cases as indicated 
on the diagram. The response determined 
by integrating the first mode alone is 
compared with the response predicted by 
the direct integration of the system of 
equations written in the finite element 
coordinate system. A comparison of the 
results indicates that, for an elastic 
material status, the structure responds 
in a first mode dominated displacement 
profile. Inclusion of additional modes 
had no significant influence on the 
displacement time-history. The structure 
response indicates an effective first 
mode period of approximately 0.9 sees. 
which can be compared with the undamped 
free vibration period of 0.8 sees. 

In Figure 4, the non-linear lateral 
displacement time-history of Level 6 is 
plotted. Curve (c) is used as the 
benchmark for the comparisons and corres­
ponds to the inelastic displacement response 
resulting from the direct integration 
by the constant average acceleration techni­
que of the system as modelled in the finite 
element coordinate system. Curves (a) 
and (b) were derived by integrating the 
system as expressed in the generalised 
coordinate system, using the tangent modal 
properties as the basis of the coordinate 
transformation. Curve (a) corresponds 
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INTEGRATION OPTION IN THE PROGRAM DYNMOD 
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INCLUDE COUPLING 

DERIVE INTEGRATION 
CONSTANTS 

FORM GENERALIZED 
STIFFNESS MATRIX 

OERIVE DYNAMIC 
LOAD VECTOR 

SOLVE FOR DYNAMIC 
DISPLACEMENT 

RESP1 

ST I F1 

| YELOIA | 

I YELD1B I 

i FSTF1 

TABLE Kb) - SCHEMATIC SUMMARY OF THE POST-ELASTIC DYNAMIC 
MODAL INTEGRATION OPTION IN THE PROGRAM DYNMOD 
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TABLE 2 - MEMBER PROPERT IES FOR THE TEST STRUCTURE 

L U M P E D NODAL M A S S 

L E V E L 
E X T E R N A C NODE 

k N 
I N T E R N A L NODE 

k N 

1 134 0 2 1 9 •0 
2 134 0 2 1 9 •a 

3 133 0 217 •o 

4 1 2 9 0 211 0 

5 129 0 211 • 0 
6 120 0 2 00 -0 

TABLE 3 - NODAL MASSES 
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to a first mode response only, whereas in 
curve (b) the first six modes are assumed 
to participate in the response. The 
response profile predicted by integration 
of the first three modes, indicated by 
the plotted points in Figure 4 , is in 
close agreement with the benchmark test. 

A contributing factor leading to the 
incongruous result whereby the inclusion 
of additional modes indicates a non-
convergent prediction of the system response 
relative to the benchmark analysis, is 
apparent when the modal frequency spectrum 
is considered. The additional modal 
coordinates which participate in the 
response are drawn from the high frequency 
region of the spectrum. The periods of 
these higher modes approach the length of 
the time-step interval, 0.01 sees., used 
in the step-by-step integration, resulting 
in an inaccurate prediction of the response 
in the upper modes. The benchmark response 
is derived using the same time-step and 
thus should not be interpreted as represent­
ing the precise response time-history. 

Integration of the first mode alone, 
curve (a), results in an overestimate of 
the structure displacements. When an 
allowance is made for member yielding, 
the higher modes participate more 
significantly in the overall structure 
response than in the elastic case. The 
shape of the displacement curve is similar 
to the first mode case, however the effect 
of the higher modes becomes apparent when 
the applied earthquake inertia loads 
cause a reversal in the direct of the 
structure displacements. 

In the process of deriving the 
transformation basis appropriate to the 
current structure yield status, it was 
necessary to resolve the eigenproblem. 
The mode periods thus derived are indicative 
of the instantaneous free vibration 
frequencies of the system. The true 
period of the system is the time taken 
by a reference point in the system to 
complete one cycle of vibration, however 
this parameter can be difficult to define 
in response time-histories which include 
a significant duration of post-elastic 
yield excursions. The instantaneous 
periods for the first and second modes 
are plotted with respect to earthquake 
duration in Figure 5. The instantaneous 
period is shown to increase threefold 
compared to the undamped, elastic, free-
vibration period. During the periods of 
intense ground motion the structure 
responds as a longer period, or less 
stiff, structure than is the case where 
the structure is constrained to remain 
in the linear elastic stress state. 

This observation assumes some sign­
ificance when a comparison is made with 
the elastic response spectrum philosophy. 
An acceleration response spectrum for a 
particular earthquake record is generated 
by determining the peak acceleration 
response of a single degree-of-freedom 
oscillator over a full range of vibration 
frequencies, assuming a specified level 
of damping in the resonator. The response 
is assumed to remain in the elastic range. 
Design spectra generate lateral force 
distributions considerably less than the 
forces developed from spectral response 

curves of moderate earthquakes such as 
El Centro 1940. The discrepancy is 
attributed to the fact that the response 
of the structure is assumed to be elastic, 
whereas code designed structures respond 
with deformations which may exceed the 
elastic limit of some members. A 
member ductility factor is defined as 
being equal to the ratio of the force 
developed in purely elastic response to 
the member yield force. For El Centro a 
ductility factor of approximately four 
relates the code design spectrum to the 
earthquake generated response spectrum. 

Access to the instantaneous mode 
period suggests an alternative rationale, 
in place of the ductility factor concept. 
The six-storey test structure has a 
first mode period under elastic conditions 
of 0.8 sees., and, in the yielded state, 
of the order of 3.0 sees. An earthquake 
response spectrum indicates the peak 
response only for a particular resonator, 
giving no information on the elapsed time 
within a particular record at which this 
peak occurs. Elastic time-history 
analyses carried out for two resonators 
with periods of 0.8 sees , and 3.0 sees., 
respectively, using the El Centro earth­
quake record, showed that the peak 
response of both resonators occurred at a 
similar elapsed time. This enables some 
direct comparisons to be made using the 
response spectrum ordinates. The 
response spectrum at the 5% damping level 
for the North-South component of 
El Centro is given in Figure 6. The 
acceleration response peaks for three 
resonators of differing periods are as 
follows: 

T x = 0.8 sees. Sa = 0.55 g 

T 2 = 2.5 sees. Sa = 0.16 g 

T 3 = 3.0 sees. Sa = 0.12 g 

where the spectral values, Sa, are given 
as a proportion of g, the acceleration 
due to gravity. The peak accelerations 
vary by a factor in the range 3.5 to 4.5. 

This simple example demonstrates 
that the effect of the increase in 
instantaneous mode periods during intervals 
of strong ground motion can be sufficient 
to limit the earthquake inertia loading 
to close to the code design spectrum level 
based on the elastic properties of the 
structure. Adequate ductility capability 
must be achieved through the member 
detailing to permit the member hinges to 
form and to rotate without any secondary 
failures in the structure. 

CONCLUSIONS: 

In this paper the principle of mode 
superposition, which is encountered 
commonly in elastic response time-history 
determination, is extended into the 
post-elastic domain. Previous investigators 
have tended to dismiss the approach as 
being impractical, however, it is submitted 
that with some reconstitution of the 
coordinate transformations fundamental to 
the approach, modal superposition can be 
successfully extended beyond the elastic 
limit and the resultant scheme is 
competitive with the direct integration 
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approach (30)'. Providing the transfor­
mation basis is rederived for each change 
in element yield status and accepting some 
bounds on the viscous damping specifications, 
the equilibrium statement in the generalized 
coordinate system is given by a set of 
uncoupled equations equal in order to the 
number of generalized coordinates assumed 
to participate in the response. 

One advantage of this formulation is 
that the response can be derived by the 
integration of a selected number of 
generalized coordinates. The integration 
stability limits are related to each 
individual mode rather than to the single 
highest frequency mode in the system, with 
the consequence that the linear acceleration 
integration scheme becomes a viable algorithm. 
It is possible to vary the time-step used 
in the integration of each coordinate, 
superimposing the contributions when the 
time-steps coincide. The time-step 
used for the lowest frequency, or longest 
period, mode can be more coarse than that 
used in the higher modes, with negligible 
loss in accuracy. 

An additional benefit of the modal 
approach is provided by the time-history 
of the dynamic properties of the system 
which is produced in this scheme. Access 
to the instantaneous frequencies and mode 
shapes of the structure provides a record 
of its dynamic sensitivity to a particular 
earthquake ground motion record. From 
the analysis of a six-storey planar frame 
it was possible to relate its observed 
peak non-linear displacement response to 
the displacement envelope predicted by 
the elastic response spectrum of the 
earthquake, The traditional approach in 
this comparison has been to relate the 
peak elastic spectral response, based on 
the initial elastic stiffness properties 
of the system to the maximum observed non­
linear response through a structure 
'displacement ductility factor 1 which is 
generally of the order of 3 to 4. As a 
result of the single analysis undertaken 
in this study a less subjective explanation 
is suggested. Because of the influence 
of element yield on the dynamic properties 
of the structure, the effective modal 
periods are lengthened during cycles of 
yield. A structure designed for ductile 
yielding during a moderate earthquake 
response does not experience the peak 
elastic spectral response because the 
influence of yielding displaces the 
effective period band to the reduced 
ordinate zone of the spectrum. The 
structure 1s non-linear spectrum tends to 
a flat curve, rather than a peaked curve 
which is characteristic of fully elastic 
response. When the shift in the effective 
modal period during yield excursions is taken 
into consideration, the non-linear dis­
placement envelope can be directly related 
to the earthquake response spectrum without 
recourse to the concept of a displacement 
ductility factor. 
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Analysis Type : E tas to -P las t ic 

E a r t h q u a k e : El Centro 18 May 1940 

Component: Nor th - South 

( a ) Displacement predicted by f i rs t mode only. 

( b ) Displacement pred ic ted by first six m o d e s . 

( c ) Displacement predicted by direct in tegrat ion. 

FIG. 4 - COMPARISON OF THE TOP FLOOR LATERAL DISPLACEMENT 
PREDICTED BY INTEGRATING SELECTED MODE COMPONENTS 
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FIG. 5- VARIATION OF EFFECTIVE MODAL PERIODS DURING INELASTIC 
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FIG. 6 - ACCELERATION RESPONSE SPECTRUM FOR THE NORTH-SOUTH 
COMPONENT OF THE EL CENTRO EARTHQUAKE 


